На правах рукописи

Цедяков Андрей Александрович

# ПОВЫШЕНИЕ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПОТРЕБИТЕЛЕЙ ЗА СЧЕТ СНИЖЕНИЯ ВРЕМЕНИ ПЕРЕРЫВА ЭЛЕКТРОСНАБЖЕНИЯ ПРИ ОДНОФАЗНЫХ ЗАМЫКАНИЯХ НА ЗЕМЛЮ В ВОЗДУШНЫХ ЛИНИЯХ 6-10 кВ.

4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Москва, 2023

Работа выполнена на кафедре электроснабжения и электротехники имени академика И. А. Будзко ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева».

| Научный руководитель:  | Лещинская Тамара Борисовна,<br>доктор технических наук, профессор, профессор<br>кафедры электроснабжения и электротехники<br>имени академика И. А. Будзко ФГБОУ ВО<br>РГАУ-МСХА имени К. А. Тимирязева.           |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Официальные оппоненты: | <b>Тропин Владимир Валентинович,</b><br>доктор технических наук, профессор, профессор<br>кафедры применения электроэнергии ФГБОУ<br>ВО «Кубанский государственный аграрный<br>университет имени И. Т. Трубилина». |  |  |  |
|                        | Бородин Максим Владимирович,<br>кандидат технических наук, доцент, заведующий<br>кафедрой «Электроснабжение» ФГБОУ ВО<br>«Орловский государственный аграрный<br>университет имени Н. В. Парахина».                |  |  |  |
| Ведущая организация:   | ФГБОУ ВО «Российский государственный аграрный заочный университет».                                                                                                                                               |  |  |  |

Защита состоится «18» мая 2023 года в 15:00 часов на заседании диссертационного совета 35.2.030.03, созданного на базе ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева» по адресу: 127434, Москва, ул. Прянишникова, д. 19.

Юридический адрес для отправки почтовой корреспонденции (отзывов): 127434, г. Москва, ул. Тимирязевская, д. 49.

С диссертацией можно ознакомиться в Центральной научной библиотеке имени Н.И. Железнова ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева» и на сайте Университета www.timacad.ru.

Автореферат разослан «\_\_\_» \_\_\_\_ 2023 г.

Ученый секретарь диссертационного совета, к.т.н., доцент

Н. Н. Пуляев

**Актуальность исследования.** Сельское хозяйство выдвигает повышенные требования к качеству электрической энергии и надежности электроснабжения. Даже кратковременные перерывы электроснабжения сельскохозяйственных потребителей при наличии автоматизированных поточных линий значительно нарушают и дезорганизуют производственный процесс, приводя, в конечном счете, к большому народнохозяйственному ущербу.

В комплексе мероприятий по повышению надежности электроснабжения сельских потребителей важную роль играет совершенствование в сельских сетях 6-10 кВ устройств защиты и сигнализации от аварийных и ненормальных режимов, так как однофазные замыкания на землю (O33) в этих сетях являются наиболее частым видом повреждений. Сельские распределительные сети наиболее разветвленные и протяженные, и в отличие от городских и промышленных электрических сетей чаще всего не имеют сетевого резервирования воздушных линий (ВЛ) 6-10 кВ. Поэтому для обеспечения надежности электроснабжения потребителей при О33 аварийная линия не отключается, а защита выполняется в виде сигнализации с действием на сигнал для информирования дежурного персонала подстанции. Такой режим работы связан с опасностью возникновения электропожаров и поражения людей и животных электрическим током, в результате чего вопросы обнаружения и поиска О33, а, следовательно, и снижение времени перерыва электроснабжения в сильно разветвленных сельских сетях приобретают особо актуальное значение.

Для существующих подстанций, имеющих в основном воздушные выводы отходящих линий 6-10 кВ, вопросы выполнения селективной сигнализации и защиты еще окончательно не решены, так как это требует реконструкции схем первичной коммутации с установкой кабельных вставок или выводов. А так же монтаж фильтров тока нулевой последовательности (ФТНП), обеспечивающих необходимую чувствительность к малым токам замыкания и работу систем селективной сигнализации и защиты.

В связи с этим, для выполнения селективной сигнализации замыканий на землю линий 6-10 кВ, имеющих воздушный вывод из распределительного устройства (РУ), первостепенной задачей является разработка простых, надежных первичных преобразователей или датчиков тока (ДТ), которые устанавливаются в РУ без реконструкции схемы первичной коммутации и образуют ФТНП для подключения селективной сигнализации по обнаружению поврежденной линии, способствуя сокращению времени перерыва электроснабжения.

Степень разработанности темы исследования. Вопросам оценки и повышения уровня надежности электроснабжения сельскохозяйственных потребителей посвящен ряд работ отечественных ученых И.А. Будзко, Н. М. Зуля, М.С. Левина, Т.Б. Лещинской, И.В. Наумова и других. Для повышения надежности электроснабжения потребителей необходимо применение комплекса специальных мер и средств, к которым относятся устройства и приборы обнаружения мест повреждения в распределительных сетях 6-10 кВ.

Изучением проблем разработки и совершенствования релейных защит от однофазных замыканий на землю занимались ведущие ученые: Шуин В.А, Сирота И.М, Шабад М.А, Шалин А.И, Сапунков М.Л и другие. На сегодняшний день

существует большое количество устройств защиты и сигнализации от O33, предназначенных для работы с внешними (не входящими в состав прибора или устройства) первичными трансформаторами (датчиками) тока и напряжения. Но большинство подстанций 35-110/6-10 кВ с воздушными выводами отходящих линий не имеют защит от O33 в связи с невозможностью подключения, что связано с отсутствием или недостаточным количеством датчиков тока.

Проблемой расчета и анализа режимов работы трансформаторов тока в схемах защит посвящены многочисленные исследования российских и зарубежных ученых, представленные в работах Федосеева А.М., Дроздова А.Д., Казанского В.Е., Сироты И.М. и других. В работах этих ученых подробно рассмотрены существующие методы расчета установившихся и переходных процессов в трансформаторах тока.

**Цель работы**. Повышение надежности электроснабжения сельскохозяйственных потребителей за счет снижения времени перерыва электроснабжения при ОЗЗ в воздушных линиях 6-10 кВ.

Объект исследования. Сельские воздушные линии напряжением 6-10 кВ.

**Предмет исследования**. Показатели надежности электроснабжения сельских воздушных линий 6-10 кВ.

Задачи исследования:

- оценить надежность электроснабжения сельскохозяйственных потребителей по времени перерыва электроснабжения при ОЗЗ и провести анализ современных устройств защиты и сигнализации ОЗЗ;

- разработать математическую модель датчика тока для расчета характеристик и анализа режимов работы в схемах защит;

- разработать макет датчика тока для микропроцессорных и полупроводниковых устройств защиты и сигнализации замыканий на землю;

- исследовать ФТНП на разработанных датчиках тока для устройств селективной сигнализации замыканий на землю воздушных линий 6-10 кВ, обеспечивающих снижение времени перерыва электроснабжения;

- провести технико-экономические расчеты предложенного варианта и определить время перерыва электроснабжения сельских потребителей.

Методика исследования: В процессе работы проведены расчеты с использованием теории электрических цепей, лабораторные и производственные испытания, а также моделирование процессов работы на компьютере в системе MatLab Simulink и численного анализа с использованием пакета MathCAD.

# Научная новизна работы состоит в том, что:

- разработана математическая модель трансформаторного датчика тока и алгоритм расчета характеристик в режиме холостого хода и нагрузки;

- разработанный алгоритм определения соотношения витков вторичных обмоток датчиков тока, образующих ФТНП для определения поврежденной линии, сокращает время перерыва подачи электроэнергии потребителям и повышает надежность электроснабжения.

# Теоретическая и практическая значимость работы:

1. Разработанная математическая модель и макет трансформаторного датчика тока накладного типа может использоваться в схемах фильтров токов

нулевой последовательности для подключения селективной сигнализации ОЗЗ и определения поврежденной линии, снижая время перерыва электроснабжения и повышая надежность сельскохозяйственных потребителей.

2. Полученная математическая модель и алгоритм расчета характеристик датчика тока приняты и используются в учебном процессе для профессиональной переподготовки и повышения квалификации слушателей Московского института энергобезопасности и энергосбережения.

3. На основе разработанного макета датчика тока было создано устройство селективного направления токов нулевой последовательности, состоящее из трех датчиков тока и направленной селективной сигнализации ЗЗП-1. Испытания, проведенные на подстанции № 564 Рождественно ПАО «Россети» Можайский РЭС, показали надежную и правильную работу устройства по определению поврежденной линии. Предполагается проведение опытной эксплуатации устройства для контроля при естественных замыканиях в сети.

## Положения, выносимые на защиту:

- разработанная математическая модель трансформаторного датчик тока и результаты исследований, подтвержденные расчетами и лабораторными испытаниями характеризующие основные параметры датчиков тока;

- разработанный макет датчика тока накладного типа для установки на проходные изоляторы шкафов КРУН 6-10 кВ с воздушными выводами отходящих линий;

результаты исследований определения чувствительности ΦΤΗΠ, **O33** ΦΤΗΠ подтверждающие, сигнализация подключенная к на что разработанных датчиках тока селективно определяла поврежденное способствуя присоединение, тем самым снижению времени перерыва электроснабжения в среднем на 2 часа и уменьшению ущерба от недоотпуска электроэнергии на 2034000 рублей.

Апробация работы. Основные положения работы докладывались и обсуждались на международных и российских научных конференциях, научных семинарах, круглых столах:

- международная научно-практическая конференция профессорскопреподавательского состава, посвященная 155-летию РГАУ-МСХА имени К.А. Тимирязева, г. Москва, Россия, 02-04 декабря 2020 г.;

- International conference «The Electrochemical Society: earth and environmental science, Orlando, FL, Oct 10-14, 2021;

- IOP Conference Series: Earth and Environmental Science (Scopus), Feb 17, 2022.

Публикации научных работ. По теме опубликовано 5 печатных научных работ, в том числе 1 работа в рецензируемых изданиях из перечня ВАК Российской Федерации, 2 работы включены в научную базу Scopus, 2 работы в прочих изданиях.

Объем и структура работы. Диссертация изложена на 171 странице, состоит из введения, основной части, содержащей 58 рисунков, 19 таблиц, заключения, принятых сокращений, списка литературы, включающего 101 наименование, в том числе 6 – на иностранном языке и 4 приложений.

#### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, определена степень ее разработанности, сформулированы цель и задачи исследования, отражена научная новизна, теоретическая и практическая значимость, проведена апробация результатов.

В первой главе «Современное состояние проблемы и задачи исследования» диссертационной работы проведена оценка надежности схем электроснабжения сельскохозяйственных потребителей напряжением 6-10 кВ. Для предприятий различных направлений (птицефабрика, ферма КРС, молокозавод, тепличный комбинат и др.) единым показателем уровня надежности может рассматриваться ущерб от недоотпуска электроэнергии:

$$Y = Y_0 \times W_{\mu e \partial}, \tag{1}$$

где: У<sub>0</sub> – удельный ущерб от недоотпуска электроэнергии, руб/кВт.ч; W<sub>нед</sub> – недоотпуск электроэнергии, из-за вероятных отказов элементов схемы, кВт.час.

$$W_{ne\partial} = P_{\Sigma} \times T_{\Sigma}, \qquad (2)$$

где:  $P_{\Sigma}$  – активная мощность, кВт;  $T_{\Sigma}$  – время перерыва электроснабжения потребителей, час.

Недоотпуск электроэнергии соответствует показателю уровня надежности для организаций по управлению единой общероссийской электрической сетью, принятом в приказе Минэнерго РФ от 29 ноября 2016 года № 1256. Объем недоотпущенной электрической энергии в каждом расчетном периоде:

$$\Pi_{ens} = \sum_{j=1}^{J} P_j \times T_j, \qquad (3)$$

где: P<sub>j</sub> – объем фактической потребляемой мощности на присоединениях потребителей, по которым произошло j-ое прекращение передачи электрической энергии, кВт; T<sub>j</sub> – продолжительность j-го прекращения передачи электрической энергии в результате технологического нарушения, час; J – количество прекращений передачи электрической энергии потребителям в расчетном периоде, шт.

Следовательно, показатель времени перерыва электроснабжения потребителей за год (Т<sub>Σ</sub>) может оценивать уровень надежности системы электроснабжения (СЭС) и принят в данной работе. Полученные данные показывают, что применяемые для питания сельскохозяйственных потребителей схемы электроснабжения не обеспечивают нормируемого уровня надежности. Самый ненадежный элемент – воздушные линии 10 кВ, с максимальным временем отключения Трп = 20...27 часов, поэтому необходимо применение комплекса специальных мер и средств для повышения надежности электроснабжения потребителей. Устройства защиты и сигнализации от аварийных и ненормальных режимов в распределительных сетях 10 кВ позволяют уменьшить время отключения потребителей и тем самым повысить надежность электроснабжения. Согласно статистическим данным, время поиска поврежденного присоединения составляет 2 и более часа в 60 % случаях от общего количества ОЗЗ, в 30 % имеют длительность 1...2 часа и в 10 % до 1 часа. В сетях среднего класса напряжения 80 % подстанций не имеют селективной защиты от ОЗЗ, то есть защиты, которая позволяет однозначно (селективно) определить воздушную линию с однофазным замыканием на землю. Данные подстанции снабжены только сигнализацией по напряжению нулевой последовательности трансформатора С помощью

напряжения, неселективной защитой, то есть защитой, определяющей однофазное замыкание на землю, которое произошло на одной из линий, но не указывающая на какой именно. Этот метод определения поврежденной линии в сетях 6-35 кВ связан со значительными эксплуатационными затратами, так как требует многократных оперативных переключений всех отходящих линий и выезда оперативно-выездной бригады (ОВБ). Отсутствие селективной сигнализации для РУ с воздушными выводами линий 6-10 кВ объясняется в первую очередь тем, что реализация известного решения с установкой кабельных трансформаторов тока нулевой последовательности (ТТНП) и релейной защиты, неприемлема по технико-экономическим соображениям, так как связана с реконструкцией схемы первичной коммутации и требует существенных дополнительных затрат. С другой селективной сигнализации стороны отсутствие связано С затруднениями ΦΤΗΠ, выполнения так необходима установка как дополнительного трансформатора тока и фильтры на стандартных трансформаторах тока не обеспечивают необходимой чувствительности.

Проведенный аналитический обзор параметров сельских распределительных сетей 6-10 кВ и современных устройств защиты и сигнализации однофазных замыканий на землю, позволил определить основные требования к датчикам тока:

- соответствовать параметрам подключаемых устройств на микропроцессорных и полупроводниковых элементах;

- рассчитаны для работы в условиях малых первичных токов замыкания на землю сельских сетей (для сетей напряжением 6-10 кВ токи замыкания 0,5...2,0 А);

- обладать возможностью плавного регулирования характеристик «входвыход» с целью достижения их идентичности, необходимой при построении качественных ФТНП для РУ 6-10 кВ;

- иметь простую, надежную и экономичную конструкцию, легко устанавливаться в распределительных устройствах 6-10 кВ без реконструкции схемы первичной коммутации и снижения надежности работы высоковольтного оборудования.

Во второй главе «Математическое обоснование модели датчика тока» представлены различные методы анализа и расчета схем с трансформаторными датчиками тока. В излагаемых ниже методах исходными данными для расчета являются конструктивные параметры ДТ (первичные и вторичные витки W<sub>1</sub>, W<sub>2</sub>; сечение сердечника Q; длина средней магнитной линии l; сопротивление рассеяния X<sub>2T</sub>), величина и характер сопротивления нагрузки Z<sub>H</sub>,  $\phi_{\rm H}$  и основная материала сердечника намагничивания  $B_m(H_m)$ , снимаемая кривая при синусоидальном токе. Основная кривая намагничивания получена для датчика тока накладного типа, сердечник которого выполнен из электротехнической стали Э-310 с незначительным воздушным зазором 0,5 мм.

В работе применялись следующие способы аппроксимации кривой намагничивания:

1) Кусочно-линейная аппроксимация: погрешность отклонения при кусочнолинейной аппроксимации двумя отрезками составила 1,961 %.

2) Аппроксимация степенным полиномом: погрешность отклонения при обоих вариантах (с дополнительным коэффициентом) аппроксимации полиномом 3 степени 1,485 % (1,221 %).

3) Аппроксимация нечетным степенным полиномом: погрешность отклонения для полинома 3 степени 3,605 % (3,089 %).

4) Аппроксимация четным степенным полиномом: погрешность отклонения для полинома полинома 4 степени 10,061 % (5,853 %).

5) Аппроксимация функцией гиперболического синуса: погрешность отклонения составила 1,9 %.

6) Аппроксимация функцией гиперболического тангенса: Погрешность отклонения составила 1,542 %.

7) Аппроксимация функцией арктангенса: Погрешность отклонения составила 1,382 %.

Любая аппроксимирующая функция содержит постоянные коэффициенты аппроксимации, которые определяются по методу наименьших квадратов. Все математические вычисления производятся с помощью программных пакетов MathCAD и Matlab.

Проведенное исследование показало, что для кривой намагничивания сердечника датчика тока накладного типа, выполненного из электротехнической стали Э-310 с воздушным зазором, наилучшие показатели имеют степенные функции, с минимальной погрешностью отклонения. Хорошие показатели имеют арктангенсные и гиперболические функции, имеющие небольшое количество коэффициентов аппроксимации. Самый простой и распространенный способ кусочно-линейной аппроксимации также подходит для расчета трансформаторных датчиков тока в режимах холостого хода и нагрузки.

а) Метод расчета трансформаторных датчиков тока в однофазных схемах включения при кусочно-линейной аппроксимации кривой намагничивания сердечника.

Полученные выражения средних и действующих значений вторичного напряжения для режима холостого хода имеют вид:

в режиме без насыщения, когда  $I_{1m} \leq I_{1mk}$ 

$$U_{2cp} = \frac{2}{\pi} I_{1m} \frac{W_1}{W_2} X_1;$$
(4)

$$U_{2} = \frac{I_{1m}}{\sqrt{2}} \times \frac{W_{1}}{W_{2}} X_{1};$$
(5)

в режиме насыщения, когда I<sub>1m</sub>>I<sub>1mk</sub>

$$U_{2cp} = \frac{2}{\pi} I_{1m} \frac{W_1}{W_2} [X_2 + (X_1 - X_2)\sin\omega t_1];$$
(6)

$$U_{2} = I_{1m} \frac{W_{1}}{W_{2}} \sqrt{\frac{1}{\pi} (X_{1}^{2} - X_{2}^{2})(\omega t_{1} + \frac{1}{2}\sin 2\omega t_{1}) + \frac{1}{2}X_{2}^{2}},$$
(7)

где:  $\omega t_1 = \arcsin \frac{H_k \cdot l}{I_{1m} \cdot W_1}$  - угол коммутации, характеризующий изменения магнитного

состояния датчика;  $X_1$ ,  $X_2$  – сопротивление ветви намагничивания, соответственно в ненасыщенном и насыщенном режимах работы;  $B_{\kappa}$  и  $H_{\kappa}$  – индукция и напряженность магнитного поля, соответствующие моменту коммутации;  $I_{1m}$  и  $I_{1mk}$  – первичный намагничивающий ток.

Расчетные и экспериментальные данные значений вторичного напряжения представлены в таблице 1.

| Таблица     | 1 – | Расчетные | И | экспериментальные | данные | значений | вторичного |
|-------------|-----|-----------|---|-------------------|--------|----------|------------|
| напряжения. |     |           |   |                   |        |          |            |

| I <sub>1</sub> , A | Экспер              | оимент            | Расчет              |           |  |
|--------------------|---------------------|-------------------|---------------------|-----------|--|
|                    | U <sub>2cp, B</sub> | U <sub>2, B</sub> | U <sub>2cp, B</sub> | $U_{2,B}$ |  |
| 10                 | 5,8                 | 6,9               | 6,54                | 7,2       |  |
| 20                 | 13,25               | 16,5              | 13,1                | 14,6      |  |
| 30                 | 15,9                | 21,2              | 16,9                | 21,3      |  |
| 50                 | 19,3                | 28,7              | 19,1                | 29,0      |  |
| 70                 | 21,4                | 34,0              | 21,0                | 34,8      |  |
| 90                 | 22,7                | 38,2              | 22,9                | 39,2      |  |
| 100                | 23,2                | 40,1              | 23,9                | 40,8      |  |

В режиме нагрузки при переходе сердечника от одного магнитного состояния к другому, во вторичном контуре имеет место переходной процесс.

Выражения для средних и действующих значений вторичного тока в режиме нагрузки имеют вид:

в режиме без насыщения, когда I<sub>1m</sub>≤I<sub>1mk</sub>

$$I_{2cp} = \frac{2}{\pi} I_{1m} \frac{W_1}{W_2} \times \frac{X_1}{Z_1};$$
(8)

$$I_{2} = \frac{I_{1m}}{\sqrt{2}} \times \frac{W_{1}}{W_{2}} \times \frac{X_{1}}{Z_{1}} ; \qquad (9)$$

в режиме насыщения, когда I<sub>1m</sub>>I<sub>1mk</sub>

$$I_{2cp} = \frac{2}{\pi} I_{1m} \frac{W_1}{W_2} \left[ \frac{X_1}{Z_1} \sin(\omega t_1 - \varphi_1 + \varphi_2) \sin(\frac{\pi}{2} - \varphi) - \frac{X_2}{Z_2} \sin(\omega t_1 - \varphi_1 + \varphi) \sin(\frac{\pi}{2} - \varphi + \varphi_1 - \varphi_2) \right]; (10)$$

$$I_{2} = I_{1m} \cdot \frac{W_{1}}{W_{2}} \sqrt{\frac{1}{\pi} \left\{ \frac{\left(\frac{X_{1}}{Z_{1}}\right)^{2} \left[ (\omega t_{1} - \varphi_{1} + \varphi) + \frac{1}{2} \cos 2\left(\frac{\pi}{2} - \varphi\right) \sin 2(\varphi_{1} - \varphi - \omega t_{1}) \right] + \left(\frac{X_{2}}{Z_{2}}\right)^{2} \left[ (\pi + \varphi_{1} - \varphi - \omega t_{1}) + \frac{1}{2} \cos 2\left(\frac{\pi}{2} - \varphi + \varphi_{1} - \varphi_{2}\right) \sin 2(\varphi - \varphi_{1} + \omega t_{1}) \right] \right\}},$$
(11)

где: Z<sub>1</sub> и Z<sub>2</sub> – полные сопротивления в ненасыщенном и насыщенном состоянии.

Расчетные значения среднего выпрямленного напряжения на активной нагрузке датчика тока приведены в таблице 2.

Таблица 2 – Экспериментальные и расчетные данные значений среднего выпрямленного напряжения

|                            |                     | Экспер             | оимент            |                    | Расчет            |                    |                      |                      |
|----------------------------|---------------------|--------------------|-------------------|--------------------|-------------------|--------------------|----------------------|----------------------|
| тл                         | $W_2 =$             | 1000               | $W_2 =$           | 2500               | $W_2 =$           | 1000               | W <sub>2</sub> =2500 |                      |
| $\mathbf{I}_1, \mathbf{A}$ | R <sub>H</sub> =500 | $R_{\rm H} = 2000$ | $R_{\rm H} = 500$ | $R_{\rm H} = 2000$ | $R_{\rm H} = 500$ | $R_{\rm H} = 2000$ | $R_{\rm H} = 500$    | R <sub>H</sub> =2000 |
| 10                         | 2,33                | 3,38               | 1,8               | 5,0                | 1,95              | 2,52               | 1,54                 | 4,42                 |
| 20                         | 4,2                 | 5,6                | 3.2               | 9,2                | 3,9               | 5,04               | 3,08                 | 8,84                 |
| 30                         | 5,8                 | 6,9                | 4,9               | 13.2               | 5,85              | 6,55               | 4,62                 | 13,26                |
| 40                         | 6,8                 | 7,7                | 6,5               | 16,3               | 6,45              | 7,3                | 6,16                 | 16,04                |
| 50                         | 7,4                 | 8,3                | 8,2               | 18,3               | 6,8               | 7,9                | 7,7                  | 16,9                 |
| 60                         | 7,8                 | 8,7                | 9,8               | 19,5               | 7,1               | 8,4                | 9,24                 | 17,8                 |
| 80                         | 8,5                 | 9,3                | 12,3              | 21,0               | 7,75              | 8,9                | 11,9                 | 19,55                |
| 100                        | 8,8                 | 9,7                | 14,5              | 22,8               | 9,0               | 9,3                | 13,1                 | 21,2                 |

Рассчитанные значения среднего выпрямленного напряжения в режиме холостого хода и на активной нагрузке датчика тока, приведенные в таблице 1 и таблице 2, имеют хорошее совпадение с экспериментом – не более 10 %.

б) Расчет характеристик датчиков тока при использовании аналитической аппроксимации кривой намагничивания.

Приведем расчетные уравнения для анализа и исследования режимов работы датчиков тока в однофазных и трехфазных схемах, рассчитанные с помощью компьютерной программы MathCAD. Приведены результаты расчета однофазной схемы включения ДТ на смешанную R, L нагрузку.

При аппроксимации характеристики намагничивания сердечника датчика тока, гиперболическим синусом и синусоидальном первичном токе получены выражения средних и действующих значений вторичного напряжения для режима холостого хода:

$$U_{2cp} = \frac{2\omega W_2 Q}{\pi\beta} \ln\left[\frac{I_{1m}W_1}{\alpha\ell} + \sqrt{1 + \left(\frac{I_{1m}W_1}{\alpha\ell}\right)^2}\right];$$
(12)

$$U_2 = \frac{\omega W_2 Q}{\beta} \sqrt{\sqrt{1 + \left(\frac{I_{1m} W_1}{\alpha \ell}\right)^2} - 1}, \qquad (13)$$

где: α и β – коэффициенты аппроксимации.

Результаты расчетов среднего и действующего значений вторичного напряжения приведены в таблице 3.

Таблица 3 – Результаты расчетов среднего и действующего значений вторичного напряжения

| т   | Датчик тока: $\ell$ =48,5 с | см; Q=0,525 см <sup>2</sup> ; W <sub>2</sub> =25 | 500; W <sub>1</sub> =1; α=0,152 a | и/см; β=3,875 1/тл. |
|-----|-----------------------------|--------------------------------------------------|-----------------------------------|---------------------|
| 11  | Pac                         | чет                                              | Экспер                            | оимент              |
| 30  | 15,75                       | 22,4                                             | 15,9                              | 21,2                |
| 50  | 19,0                        | 29,8                                             | 19,8                              | 28,7                |
| 70  | 21,1                        | 35,6                                             | 21,4                              | 34,0                |
| 90  | 22,7                        | 41,0                                             | 22,7                              | 38,2                |
| 100 | 23,3                        | 43,2                                             | 23,2                              | 40,1                |

В режиме нагрузки, в качестве аппроксимирующей функции кривой намагничивания сердечника выбран нечетный степенной полином.

Дифференциальное уравнение (14) является исходным для расчета на компьютере различных режимов работы датчика тока при изменении первичного тока и параметров схемы. Используя его, можно определить амплитудные, действующие и средние значения вторичных токов  $i_2$  и  $i_{02}$ , их гармонические составляющие, проанализировать влияние отдельных параметров схемы на значения токов, напряжений, выходной мощности, исследовать резонансные явления на отдельных гармониках и т.д.

$$\left(W_{2}Q + \frac{\alpha\ell}{W_{2}}L + \frac{6\beta\ell}{W_{2}}B\right)\frac{d^{2}B}{dt^{2}} + \left(\frac{\alpha\ell}{W_{2}}R + \frac{3\beta\ell}{W_{2}}RB^{2}\right)\frac{dB}{dt} + \frac{\alpha\ell}{W_{2}}\frac{1}{C}B + \frac{\beta\ell}{W_{2}}\frac{1}{C}B^{3} = I_{1m}\frac{W_{1}}{W_{2}}\left(\omega R\cos\omega t - \omega^{2}L\sin\omega t + \frac{1}{C}\sin\omega t\right) \cdot (14)$$

Расчетные и экспериментальные данные среднего вторичного тока представлены в таблице 4.

| ТОКА    |                      |            |             |            |  |  |  |  |  |
|---------|----------------------|------------|-------------|------------|--|--|--|--|--|
|         | Нагрузка R, L        |            |             |            |  |  |  |  |  |
|         | W <sub>2</sub> =2500 |            |             |            |  |  |  |  |  |
| $I_1,A$ | Pac                  | чет        | Эксперимент |            |  |  |  |  |  |
|         | R=686 Ом;            | R=2186 Ом; | R=686 Ом;   | R=2186 Ом; |  |  |  |  |  |
|         | L=0,59 Гн            | L=0,59 Гн  | L=0,59 Гн   | L=0,59 Гн  |  |  |  |  |  |
| 10      | 3,4                  | 2,35       | 3,6         | 2,5        |  |  |  |  |  |
| 50      | 16,16                | 8,8        | 16,4        | 9,15       |  |  |  |  |  |
| 100     | 27,16                | 11,04      | 29,0        | 11,4       |  |  |  |  |  |

Таблица 4 – Расчетные и экспериментальные данные среднего вторичного

Приемлемое совпадение расчетных и экспериментальных данных (расхождение не более 10 %) соблюдается как для режима холостого хода, так и для режима нагрузки в диапазоне сопротивлений вторичной цепи датчика в 2...3 раза больших сопротивлений ветви намагничивания.

в) Был произведен сравнительный анализ результатов расчета характеристик датчика тока, различными методами для режима холостого хода и нагрузки.

В режиме холостого хода расчет характеристик датчика тока производился методом кусочно-линейной аппроксимации и гиперболической функцией синуса, данные сравнительного анализа приведены в таблице 5.

| Таблица 5 – Режим холостого хода |               |                    |              |                    |                       |                    |  |  |
|----------------------------------|---------------|--------------------|--------------|--------------------|-----------------------|--------------------|--|--|
| I <sub>1</sub> ,A                | Эксперимент   |                    | Расчет       |                    |                       |                    |  |  |
|                                  |               |                    | Кусочно-     | линейная           | Гиперболический синус |                    |  |  |
|                                  | $U_{2cp}$ , B | U <sub>2</sub> , B | $U_{2cp}, B$ | U <sub>2</sub> , B | $U_{2cp}, B$          | U <sub>2</sub> , B |  |  |
| 30                               | 15,9          | 21,2               | 16,9         | 21,3               | 15,75                 | 22,4               |  |  |
| 70                               | 21,4          | 34,0               | 21,0         | 34,8               | 21,1                  | 35,6               |  |  |
| 100                              | 23,2          | 40,1               | 23,9         | 40,8               | 23,3                  | 43,2               |  |  |
| Совпадение %                     | 100           | 100                | 96,5         | 98,5               | 99                    | 94,5               |  |  |
| Погрешность %                    | 0             | 0                  | 3,5          | 1,5                | 1                     | 5,5                |  |  |

## Таблица 5 – Режим холостого хода

TOKO

Из проведенного сравнительного анализа видно, что расчет среднего значения вторичного напряжения с минимальной погрешностью произведен методом гиперболического синуса, а действующее значение вторичного напряжения с минимальной погрешностью определяется методом кусочнолинейной аппроксимации.

В режиме нагрузки расчет характеристик датчика тока производился методом кусочно-линейной аппроксимации и степенным полиномом, данные сравнительного анализа приведены в таблице 6.

|               |                      |                      | Расчет            |                      |                   |                      |  |  |
|---------------|----------------------|----------------------|-------------------|----------------------|-------------------|----------------------|--|--|
| ТА            | JKUIEL               | римент               | Кусочно-          | линейная             | Степенной полином |                      |  |  |
| 1],A          | $R_{\rm H} = 500$    | R <sub>H</sub> =2000 | $R_{\rm H} = 500$ | R <sub>H</sub> =2000 | $R_{\rm H} = 500$ | R <sub>H</sub> =2000 |  |  |
|               | I <sub>2cp</sub> , A | I <sub>2cp</sub> , A | $I_{2cp}$ , A     | $I_{2cp}, A$         | $I_{2cp}, A$      | I <sub>2cp</sub> , A |  |  |
| 10            | 3,6                  | 2,5                  | 3,08              | 2,21                 | 3,4               | 2,35                 |  |  |
| 50            | 16,4                 | 9,15                 | 15,4              | 8,45                 | 16,16             | 8,8                  |  |  |
| 100           | 29,0                 | 11,4                 | 26,2              | 10,6                 | 27,3              | 11,04                |  |  |
| Совпадение %  | 100                  | 100                  | 90,5              | 91                   | 96                | 96                   |  |  |
| Погрешность % | 0                    | 0                    | 9,5               | 9                    | 4                 | 4                    |  |  |

#### Таблица 6 – Режим нагрузки

Из проведенного сравнительного анализа видно, что расчет среднего значения вторичного тока с минимальной погрешностью произведен методом степенного полинома.

Был предложен алгоритм расчета характеристик датчиков тока в режимах холостого хода и нагрузки:

1) В режиме холостого хода расчет среднего значения вторичного напряжения следует производить методом гиперболического синуса по формуле (12), расчет действующего значения вторичного напряжения производится методом кусочно-линейной аппроксимации по формулам (5) и (7).

2) В режиме нагрузки расчет среднего значения вторичного тока следует производить методом степенного полинома по формуле (14).

В третьей главе «Разработка макета датчика тока для устройств защиты и сигнализации замыканий на землю сельских распределительных сетей» представлены исследования по выбору параметров датчиков тока, которые включали изучение следующих вопросов:

- определение основных конструктивных параметров: исполнение сердечника и вторичной обмотки, выбор магнитного материала, определение сечения Q и длины средней магнитной линии L сердечника, определение числа витков W<sub>2</sub> вторичной обмотки;

- установка датчиков в шкафах КРУН-10 кВ;

- исследование характеристик и режимов работы;

- оценка возможности применения датчиков в схемах защит от коротких замыканий.

Конструктивно датчик тока представляет собой вторичную систему (магнитопровод с обмоткой), устанавливаемую на проходных изоляторах типа ИП, ИПУ и др. в шкафах КРУН-10 кВ (рисунок 1).



Рисунок 1 – Общий вид трансформаторного датчика тока накладного типа, устанавливаемого в КРУН 6-10 кВ

Роль первичной обмотки и основной высоковольтной изоляции выполняют конструктивные части (токоведущий стержень и изоляционное тело) проходного изолятора. В связи с тем, что первичная обмотка и основная изоляция в датчиках отсутствует, стоимость ИХ незначительна. Внутренний диаметр датчика учетом определяется проходного изолятора и с размером обеспечения электроизоляционных расстояний составляет D<sub>BH</sub> = 150...180 мм, длина пластин с учетом диаметра 450...600 мм. Сечение магнитопровода для датчиков с малым объемом стали 0,5...1,0 см<sup>2</sup>, число витков и исполнение вторичной обмотки датчика определялись из условий требования линейности и идентичности характеристик, вторичных токов, напряжений, мощности И компактности конструкции.

Результаты исследований характеристик датчиков тока представлены в виде графиков и осциллограмм.

На рисунке 2 представлено амплитудное, действующее и среднее значения Э.Д.С. на выходе ДТ в зависимости от первичных токов и витков вторичной обмотки.



Рисунок 2 – Амплитудное, действующее и среднее значения Э.Д.С.

Удельные характеристики амплитудных, действующих и средних значений Э.Д.С. вторичной обмотки датчика в функции удельных ампервитков, которые приведены на рисунке 2, могут быть использованы для определения Э.Д.С. при других конструктивных параметрах датчиков.

$$E_{2y0} = \frac{E_2}{W_2 Q};$$
 (15)

$$aW_{y\partial} = \frac{I_1 W_1}{l} \,, \tag{16}$$

где: Q – сечение магнитопровода;  $\ell$  – длина средней магнитной линии сердечника,  $W_1$ ,  $W_2$  – число витков первичной и вторичной обмотки.

По удельным характеристикам построена основная кривая намагничивания (B<sub>m</sub>(H<sub>m</sub>)) датчика (рисунок 3а).

$$B_m = \frac{E_{y\partial.cp.} \times 10^4}{4f}; T\pi$$
(17)

$$H_m = \sqrt{2}aW_{y\partial}, A/cM \tag{18}$$

где: f – частота; B<sub>m</sub> и H<sub>m</sub> – индукция и напряженность магнитного поля.

Рассматривались и другие варианты сердечника датчика тока (рисунок 3б), с более значительным зазором и различным исполнением вторичных обмоток.





Рисунок 3б – Влияние на величину Э.Д.С. зазора и исполнения вторичной обмотки

Как видно из рисунка 3а, для принятого конструктивного исполнения сердечника с незначительным воздушным зазором ( $\delta = 0,5$  мм) кривая намагничивания располагается намного ниже диапазонных кривых для сталей Э-310 и Э-42. Это обстоятельство благоприятно как для снижения максимальных Э.Д.С или напряжений при больших первичных токах, так и для достижения линейности и идентичности характеристик датчиков.

При наличии зазора в магнитопроводе, рисунок 3б, отсутствует влияние остаточного намагничивания, что делает характеристику более линейной, тем самым способствуя снижению Э.Д.С. при больших первичных токах.

При исследовании режима нагрузки показано влияние сечения сердечника, числа витков и сопротивления нагрузки на величину вторичных токов и напряжений. На рисунке 4 приведена зависимость напряжения на выходе датчика тока от первичных токов, при различном сечении сердечника и количества витков вторичной обмотки.

Вследствие соизмеримости сопротивлений намагничивания и цепи вторичной обмотки датчика тока, режим работы последнего в сильной степени зависит от сопротивления нагрузки (рисунок 5а), что позволяет путем изменения регулируемого сопротивления, подключаемого параллельно входу устройства, получать требуемую характеристику, практически с любым коэффициентом преобразования.

$$K = \frac{dU_2}{dI_1},\tag{19}$$

где: U<sub>2</sub> – напряжение вторичной обмотки; I<sub>1</sub> – первичный ток.



Рисунок 4 – Зависимости напряжения на выходе датчика от первичных токов, витков вторичной обмотки и сечения сердечника

Наиболее перспективен, в этом смысле, способ регулирования характеристик, основанный на эффекте экранирования, когда регулируемое сопротивление подключается на дополнительную обмотку. В этом случае отсутствие электрической связи между рабочими и регулировочными цепями облегчает построение схем, согласование выходных и входных параметров датчика и устройства, осуществляет развязку цепей по постоянному току.

Зависимости влияния величины нагрузочного сопротивления на выходные характеристики датчика показаны на рисунке 5а и 5б.



Рисунок 5а – Влияние величины нагрузочного сопротивления на выходные характеристики датчика



Рисунок 56 – Выходная нагрузка датчика от числа витков вторичной обмотки и величины сопротивления нагрузки

Проведенные экспериментальные исследования определили исполнение ДТ, удовлетворяющее требованиям микропроцессорных и полупроводниковых устройств защиты к параметрам сельских сетей. Магнитопровод, кольцевой, из 15 пластин электротехнической стали, собираемых внахлестку. Длина пластин 450...600 мм, ширина 10 мм, толщина 0,35 мм. Активное сечение магнитопровода 0,525 см<sup>2</sup>. Зазор  $\delta$ =0,5 мм. Вторичная обмотка, сосредоточенная в виде двух

15

катушек длиной 7...10 см. Число витков основной  $W_2=2500$  с тремя отпайками 500, 1500, 2500 витков и дополнительной  $W_3=2000$ . Выходные параметры (для значений рабочих токов I<sub>1</sub>=40-50 A): напряжение U<sub>2</sub>=1,5...12 B; мощность S=50...140 мBA; входные сопротивления подключаемых устройств  $R_{\rm H}$ =50....2000 Ом.

Представленные характеристики трансформаторных датчиков тока позволяют выбрать необходимое число вторичных витков, для заданного диапазона первичных токов и вторичных параметров. Таким образом, достигается унификация по первичным токам 10...100 А и вторичным нагрузкам 50...2000 Ом, что для практического использования наиболее подходит для питания следующих защит от однофазных замыканий на землю: токовой ненаправленной защиты нулевой последовательности, токовой направленной защиты нулевой последовательности защиты, реагирующей ток И на наложенный не промышленной частоты. Данные защиты, наиболее применяемые в сельских распределительных сетях 6-10 кВ.

«Исследование B четвертой главе фильтров нулевой токов разработанных последовательности на датчиках тока» приводятся теоретические и экспериментальные исследования фильтров токов нулевой последовательности на трансформаторных датчиках тока и результаты разработки оптимального варианта фильтра для сельских подстанций с воздушными выводами отходящих высоковольтных линий. Качество фильтров токов нулевой последовательности (ФТНП) определяется двумя показателями:

а) наименьшим утроенным первичным током нулевой последовательности, при котором срабатывает устройство сигнализации;

б) напряжением или током небаланса на выходе схемы фильтра при I<sub>3</sub>=0.

Из возможных схем фильтров токов нулевой последовательности на предложенных датчиках для исследований представляет интерес следующие варианты:

1. ФТНП, образованный параллельным включением вторичных обмоток датчиков.

2. Схема ФТНП при соединении вторичных обмоток датчиков в открытый треугольник.

3. Схема ФТНП, имеющая два вторичных контура, выделяющих токи нулевой последовательности. (Один из контуров является рабочим, к нему подключается реагирующий орган устройства сигнализации, а второй – дополнительный).

Анализ исследуемых схем показал, что наилучшими показателями обладает двухконтурная схема ФТНП, у которой в качестве рабочего принят параллельный контур, а дополнительный, предназначенный для повышения чувствительности, замкнут на емкость.

В задачу исследований входило:

1. Разработка методики расчета схем фильтров токов нулевой последовательности, для режимов нагрузки и холостого хода первичной цепи.

2. Анализ схем ФТНП с точки зрения показателей качества и выбор оптимального варианта.

16

Исследования проводились применительно к параметрам сельских сетей для значений первичных рабочих токов  $I_{pa\delta} = 40...100$  Ампер и токов замыкания  $I_3 = 1...5$  Ампер.

При учете следующих допущений: a) к ФТНП подведена симметричная система первичных токов; б) датчики идентичны; в) из высших гармоник учитывается только третья.

В связи с тем, что схема фильтра симметрична, исследование данного режима работы фильтра будем проводить по двум однофазным схемам замещения, составленным для первой гармоники (режим нагрузки) и третьей гармоники (режим холостого хода), рисунок 6.



Рисунок 6 – Схемы замещения фильтров токов нулевой последовательности для симметричного режима нагрузки первичной цепи:

а – однофазная для первой гармоники; б – однофазная для третьей гармоники

Анализ проводим методом гармонического баланса при аппроксимации кривой намагничивания степенным полиномом:

$$H = \alpha B + \beta B^{3}; \qquad (20)$$
  

$$B_{A} = B_{1} \sin \omega t + B_{3} \sin (3\omega t - \psi); \qquad (21)$$
  

$$B_{B} = B_{1} \sin (\omega t - 120^{0}) + B_{3} \sin (3\omega t - \psi); \qquad (21)$$
  

$$B_{C} = B_{1} \sin (\omega t + 120^{0}) + B_{3} \sin (3\omega t - \psi).$$

Уравнение для ФТНП без емкости в дополнительном контуре, позволяет определить взаимосвязь между первой и третьей гармониками магнитной индукции и соответствующие значения первичных токов:

$$I_{1} = \sqrt{\frac{a_{1}^{2} + b_{1}^{2}}{\left(\frac{W_{1}}{W_{2}}\right)^{2} \left(R_{2T}^{2} + \omega^{2}L_{2T}^{2}\right)}},$$
(22)

где:  $a_1 = \omega B_1 W_2 Q - b R_{2T} - a \omega L_{2T}; b_1 = b \omega L_{2T} - a R_{2T}; R_{2T}, L_{2T}$  – сопротивление обмоток рабочего контура фильтра;  $\omega$  – угловая частота.

Среднее значение напряжения небаланса на выходе фильтра определяется:

$$U_{\mu\delta.cp} = 1,19\,\omega W_2 Q B_3 \times 10^{-3} \,. \tag{23}$$

Приведенный метод анализа схем ФТНП дает возможность количественно оценить влияние отдельных параметров датчиков на величину небалансов. В связи с этим, уменьшения небалансов можно достичь увеличением сечения сердечников

датчиков, уменьшением длины средней магнитной линии, применение магнитных материалов с высокой магнитной проницаемостью.

Кроме того, уменьшения небалансов и в целом улучшения качества фильтра, повышение чувствительности устройств защиты от замыканий на землю может быть достигнуто подключением конденсатора, компенсирующего индуктивность нагрузки (реле) и трансформаторов тока на дополнительную обмотку. Принципиальная схема ФТНП с дополнительным контуром и расчетные схемы замещения для первой и третьей гармоник в режиме симметричных первичных токов приведены на рисунке 7.



Рисунок 7 – Принципиальная схема ФТНП с дополнительным контуром (a), расчетные схемы замещения для первой (б) и третьей (в) гармоник в режиме симметричных первичных токов

Для этих условий уравнения по первой и третьей гармоникам для одной фазы рабочего и дополнительного контуров фильтра запишутся следующим образом:

$$W_2 Q \frac{dB_1}{dt} = i_{21} R_{2T} + L_{2T} \frac{di_{21}}{dt}; \qquad (24)$$

$$W_2 Q \frac{dB_3}{dt} = i_3 R_{2T} + L_{2T} \frac{di_3}{dt} + 3i_3 R_H;$$
(25)

$$W_2 Q \frac{dB_3}{dt} = i_0 R_{32T} + L_{32T} \frac{di_0}{dt} + \frac{1}{3C_{32}} \int i_0 dt , \qquad (26)$$

где:  $R_{2T}$ ,  $L_{2T}$  – сопротивления обмоток рабочего контура фильтра;  $R_{32T}$ ,  $L_{32T}$ ,  $C_{32}$  - сопротивления в цепи дополнительного контура, приведенные к виткам рабочих обмоток датчиков;  $i_{21}$ ,  $i_3$  – первая и третья гармоники вторичного тока в рабочем контуре;  $i_0$  – ток в дополнительном контуре, приведенный к рабочему контуру.

Уравнениям (24) – (26) соответствует однофазная схема замещения ФТНП с дополнительным контуром по первой и третьей гармонике (рисунки 7б, 7в).

Из схемы замещения фильтра с дополнительным контуром для режима симметричных первичных токов (рисунок 7в) полное сопротивление по третьей гармонике равно:

$$Z_{3} = \frac{\left(R_{2T} + 3R_{H} + j3X_{2T}\right)\left[R_{32T} + j\left(3X_{32T} - \frac{X_{C32}}{9}\right)\right]}{\left(R_{2T} + 3R_{H} + j3X_{2T}\right) + \left[R_{32T} + j\left(3X_{32T} - \frac{X_{C32}}{9}\right)\right]}.$$

$$R_{2T} = \frac{\left(\frac{1}{2}R_{2T} + 3R_{H} + j3X_{2T}\right)}{\left(R_{2T} + 3R_{H} + j3X_{2T}\right) + \left[R_{32T} + j\left(3X_{32T} - \frac{X_{C32}}{9}\right)\right]}.$$
(27)

Так как

$$R_{32T}\langle\langle |R_{2T} + 3R_{H} + j3X_{2T}|;$$
(28)

и если величина емкости в дополнительном контуре выбрана из условия:

$$3X_{32T} = \frac{X_{C32}}{9}; (29)$$

то нагрузка фильтра по третьей гармонике будет равняться:

$$Z_{K} = R_{32T}. \tag{30}$$

Следует заметить, что нагрузка фильтра без контура по третьей гармонике составляет:

$$Z_0 = R_{2T} + 3R_H + j3X_{2T}.$$
 (31)

Таким образом, режим работы ФТНП с дополнительным контуром по третьей гармонике, совершенно отличен от режима рассмотренной выше одноконтурной схемы фильтра. Несмотря на то, что небалансы определяются по тем же формулам (22) и (23), уровень их будет значительно ниже, так как  $Z_K \ll Z_0$ .

Величина емкости, обеспечивающая последовательный резонанс в дополнительном контуре по третьей гармонике, определяется в соответствии с (29) по выражению:

$$C = \frac{10^6}{27\omega X_{3T}}, \, \mathsf{MK}\Phi \tag{32}$$

где: X<sub>3T</sub> – индуктивное сопротивление рассеяния дополнительной обмотки датчика.

Для анализа работы схемы фильтра с дополнительным контуром в режиме замыкания составим эквивалентные расчетные схемы замещения (рисунок 8).

Расчетные соотношения и величины вторичных токов нагрузки и утечки определяются по схеме замещения на рисунке 86. Где:

$$Z_{1} = \frac{\left(R_{2T} + jX_{2T}\right)\left[3R_{2T} + j\left(3X_{2T} + 3X_{02} - X_{C}\right)\right]}{\frac{9}{2}R_{2T} + j\left[\frac{9}{2}\left(X_{2T} + X_{02}\right) - X_{C}\right]};$$
(33)

$$Z_{2} = \frac{\frac{1}{2} (R_{2T} + jX_{2T}) [R_{2T} + j(X_{2T} + 3X_{02})]}{\frac{9}{2} R_{2T} + j [\frac{9}{2} (X_{2T} + X_{02}) - X_{c}]};$$
(34)

$$Z_{3} = \frac{\frac{1}{2} \left[ 3R_{2T} + j \left( 3X_{2T} - X_{C} \right) \right] \left[ R_{2T} + j \left( X_{2T} + X_{02} \right) \right]}{\frac{9}{2} R_{2T} + j \left[ \frac{9}{2} \left( X_{2T} + X_{02} \right) - X_{C} \right]}.$$
(35)



Рисунок 8 – Схемы замещения ФТНП с дополнительным контуром в режиме замыкания первичной цепи: а – принципиальная; б – расчетная

Входящее в приведенные формулы сопротивление ветви намагничивания датчика X<sub>02</sub> определяется из выражения:

$$Z_{02} = \mu \omega \frac{W_2^2 Q}{\ell},\tag{36}$$

где:  $\mu_a \leq \mu \leq \mu_{\text{макс}} \mu_a$ ,  $\mu_{\text{макс}}$  – соответственно начальная и максимальная магнитные проницаемости.

Значение первичного коммутационного тока определяется для данного случая следующим образом:

$$I_{1mk} = \frac{H_a \ell}{W_1 \frac{Z_{02_a}}{Z_{\mathcal{P}}}};$$
(37)

где:

$$Z_{\mathfrak{I}} = Z_1 + \frac{(Z_2 + R_H)Z_3}{Z_2 + Z_3 + R_H}.$$
(38)

Полученные выражения (33) – (38) позволяют определять полезный сигнал на выходе двухконтурного фильтра при замыкании на землю, как в режиме холостого тока линии, так и в режиме нагрузки. При этом следует отметить, что в режиме холостого хода линии и малых токов замыкания на землю (1...2 A), то есть на пороге чувствительности защиты, магнитное состояние сердечников датчиков характеризуется начальной магнитной проницаемостью  $\mu_a$ . Этот режим и является расчетным по условию чувствительности.

Из схемы замещения (рисунок 8а) может быть получено условие максимума выходного сигнала в рассматриваемом режиме, которому соответствует:

$$3X_{32} + 3X_{02} = X_{C32} \,. \tag{39}$$

Таким образом, эффект от включения дополнительного контура с емкостью состоит не только в снижении напряжения небаланса на выходе фильтра, но и в повышении полезного сигнала в режиме замыкания на землю.

Результаты расчетов напряжения небаланса U<sub>нб.ср</sub> и полезного сигнала U<sub>2.ср</sub> фильтра, для трансформаторных датчиков приведенные на рисунке 9, имеют приемлемое совпадение с экспериментальными данными.



Рисунок 9а – Зависимости напряжения небалансов от первичных токов: 1 – для ФТНП с вторичными сосредоточенными обмотками (1<sup>1</sup>эксперемент); 2 – то же с распределенными обмотками; 3 – для ФТНП с дополнительным контуром и емкостью равной 1 мкФ



Рисунок 9б – Расчетные и экспериментальные характеристики ФТНП с дополнительным контуром в режиме холостого хода линии и замыкания на землю

Конструктивные параметры фильтра определяются из условия совмещения требования максимального повышения полезного сигнала при замыкании на землю в режиме холостого хода линии (39) и снижение небалансов на выходе фильтра в режиме рабочих токов линии (29). Совмещение этих требований достижимо при использовании двухконтурного фильтра с независимым выбором сопротивлений X<sub>2T</sub> и X<sub>3T</sub>.

Решаем совместно уравнения резонансов по третьей (29) и первой (39) гармоникам:

$$X_{C32} = 27X_{32};$$
  

$$X_{C32} = 3X_{32} + 3X_{02}.$$
(40)

Получаем связь между сопротивлением ветви намагничивания датчиков в режиме холостого хода первичной цепи и замыкании на землю, и сопротивлением рассеяния обмотки дополнительного контура, приведенным к виткам рабочей обмотки датчика:

$$X_{02} = 8X_{32T}.$$
 (41)

Из выражения (41) определяется оптимальное соотношение между витками рабочей и дополнительной обмотки датчика:

$$X_{02} = 8X_{32T} \left(\frac{W_2}{W_3}\right)^2;$$
(42)

$$\frac{W_2}{W_3} = \sqrt{\frac{X_{02}}{8X_{3T}}}.$$
(43)

Экспериментальные исследования схемы фильтра подтвердили теоретические выводы, как показано на рисунке 9а, обеспечивается снижение небалансов при наличии дополнительного контура с емкостью и повышается полезный сигнал, рисунок 9б. Имеется величина емкости, при которой показатель фильтра «сигнал/помеха» имеет максимальное значение порядка 150...200:

$$\lambda = \frac{U_2}{U_{n\delta}} \times \frac{I_1}{I_{3am}}, \qquad (44)$$

где:  $U_2$  – напряжение в режиме замыкания линии;  $U_{h\delta}$  – напряжение небаланса;  $I_1$ ,  $I_{3am}$  – рабочий ток линии и ток замыкания.

В пятой главе «Оценка надежности и экономической эффективности устройства сигнализации замыканий на землю на сельских подстанциях» представлена реализация селективной сигнализации замыканий на землю, показывающая, что фильтр токов нулевой последовательности на разработанных датчиках тока и подключенная к ним селективная сигнализация замыканий на землю, обеспечивает надежную и правильную работу устройств по определению поврежденной линии, при замыканиях в сети 10 кВ.

В результате время поиска поврежденного присоединения, сокращается в среднем на 2 часа. Показатель времени перерыва электроснабжения потребителей за год, оценивающий уровень надежности СЭС рассчитанный по методике ОАО «РОСЭП» и традиционной методике, также уменьшается на два часа, что ведет к уменьшению ущерба от недоотпуска электроэнергии, являющегося единым показателем уровня надежности электроснабжения. Ниже приведена таблица 7, уменьшение ущерба от недоотпуска электроэнергии за счет снижения времени поиска мест замыканий на землю, где в качестве примера рассмотрена среднестатистическая линия 10 кВ мощностью 565 кВт, получающая питание от двухтрансформаторной подстанции 35/10 κВ. Ущерб от недоотпуска электроэнергии определялся по формуле (1), среднее значение удельного ущерба равно  $Y_0 = 1800$  руб./кВт·ч.

| Система электроснабжения                                                     | Р <sub>Σ</sub> ,<br>кВт | Т <sub>ПОТР</sub> ,<br>ч | W <sub>недоотп</sub> ,<br>кВт×ч | У <sub>0</sub> ,<br>Руб./кВт×ч | У,<br>тыс. руб. | Уменьшение<br>ущерба, тыс.<br>руб. |
|------------------------------------------------------------------------------|-------------------------|--------------------------|---------------------------------|--------------------------------|-----------------|------------------------------------|
| ОАО «РОСЭП»<br>(два трансформатора 35/10<br>кВ) до установки ДТ              | 565                     | 43                       | 24295                           | 1800                           | 43731           | 2034                               |
| ОАО «РОСЭП»<br>(два трансформатора 35/10<br>кВ) после установки ДТ           | 565                     | 41                       | 23165                           | 1800                           | 41697           | 2034                               |
| Традиционная методика<br>(два трансформатора 35/10<br>кВ) до установки ДТ    | 565                     | 56,4                     | 31866                           | 1800                           | 57358,8         | 2034                               |
| Традиционная методика<br>(два трансформатора 35/10<br>кВ) после установки ДТ | 565                     | 54,4                     | 30736                           | 1800                           | 55324,8         | 2034                               |

Таблица 7 – Уменьшение ущерба от недоотпуска электроэнергии, за счет снижения времени поиска мест замыканий на землю.

Согласно таблицы данным 7, можно сделать вывод: установка разработанных составляющих нулевой датчиков тока, фильтр токов последовательности и подключение к ним селективной сигнализации, позволяет уменьшить ущерб от недоотпуска электроэнергии на 2034000 рублей и тем самым, повысить надежность электроснабжения сельскохозяйственных потребителей, за счет снижения времени поиска мест замыканий на землю.

Технико-экономическое сравнение четырех вариантов выполнения селективной сигнализации замыканий на землю сельских линий с воздушными выводами подтвердили целесообразность предложенного решения ввиду меньшей стоимости устройств, простоты исполнения И монтажа В КРУН, без реконструкции схемы первичной коммутации. Стоимость выполнения селективной сигнализации на линиях 6-10 кВ с использованием разработанных датчиков тока, примерно вдвое меньше по сравнению с вариантом, требующим установку кабельной вставки с защитой ЗЗП-1.

# ОСНОВНЫЕ ВЫВОДЫ

1. Оценка надежности схем электроснабжения, которые применяются для питания сельскохозяйственных потребителей, позволила определить, что самый ненадежный элемент это воздушные линии 6-10 кВ, с максимальным временем перерыва электроснабжения  $T_{PЛ} = 20...27$  часов. Устройства селективной защиты и сигнализации замыканий на землю в воздушных линиях 10 кВ позволяют существенно снизить время перерыва электроснабжения потребителей и тем самым повысить надежность электроснабжения. Проведенный анализ способов выполнения селективной сигнализации замыканий на землю на существующих подстанциях с воздушными выводами из распределительных устройств 6-10 кВ показал отсутствие удовлетворительных решений.

2. Разработанная математическая модель трансформаторного датчика тока позволяет проводить анализ разнообразных режимов работы датчиков и дает результаты, имеющие хорошее совпадение с экспериментом, расхождение не более 10 %.

3. Разработанный макет упрощенных датчиков тока накладного типа для РУ 6-10 кВ унифицированного исполнения для всего диапазона требуемых первичных токов позволяют без существенных дополнительных затрат и реконструкции РУ выполнить защиты от замыканий на землю в сетях 6-10 кВ. Исследования режимов работы датчиков тока показали их преимущества.

4. Предложенная в данной работе схема ФТНП на трансформаторных датчиках тока с дополнительным контуром имеющая показатель чувствительности  $\lambda = 150...200$  и подключенная к ним селективная сигнализация замыканий на землю, обеспечивает надежную и правильную работу устройств по определению поврежденной воздушной линии, при замыканиях в сети 10 кВ. В результате время перерыва электроснабжения потребителей сокращается.

5. Проведенные технико-экономические расчеты по выполнению селективной сигнализации на существующих сельских подстанциях 35-110/6-10 кВ с использованием разработанных устройств показали целесообразность предложенного решения ввиду незначительной стоимости, простоты исполнения и монтажа без реконструкции схемы первичной коммутации. Сметная стоимость

приблизительно вдвое меньше, по сравнению с вариантом установки кабельной вставки с устройством ЗЗП-1. Время перерыва электроснабжения потребителей за год, оценивающий уровень надежности СЭС уменьшается на два часа, что ведет к уменьшению ущерба от недоотпуска электроэнергии на 2034000 рублей, это позволяет сделать вывод о повышении надежности электроснабжения сельскохозяйственных потребителей, за счет применения ФТНП на разработанных датчиках тока.

Устройства монтируются без реконструкции РУ и существенных дополнительных затрат, отвечают предъявленным техническим требованиям и являются перспективными для применения в схемах сельского электроснабжения.

#### Список работ, опубликованных по теме диссертации

# Статьи, опубликованные в ведущих рецензируемых научных изданиях, рекомендованных перечнем ВАК Российской Федерации

1. Цедяков, А. А. Аппроксимация кривой намагничивания сердечника датчика тока для релейных защит распределительных сетей 6-10 кВ / А. А. Цедяков, С. И. Белов, Н. А. Стушкина // Международный технико-экономический журнал. – 2021. – № 5. – С. 41-47. – DOI 10.34286/1995-4646-2021-80-5-41-47. – 0,44 п.л. (авт. 0,37 п.л.).

#### Публикации в изданиях, индексируемых в международных цитатноаналитических базах данных

1. Belov, S. I. Analysis of a computer model of a power supply system for agricultural consumers in a single-phase ground fault mode / S. I. Belov, A. A. Tsedyakov, M. M. Galkin // IOP Conference Series: Earth and Environmental Science, Smolensk, 25 января 2021 года. – Smolensk, 2021. – Р. 052019. – DOI 10.1088/1755-1315/723/5/052019. – 0,31 п.л. (авт. 0,25 п.л.).

2. Belov, S. I. Simulation modeling of a two-winding three-phase voltage transformer in the MATLAB program / S. I. Belov, A. A. Tsedyakov, M. M. Galkin // IOP Conference Series: Earth and Environmental Science : II International scientific and practical conference «Ensuring sustainable development in the context of agriculture, green energy, ecology and earth science», Smolensk, Russian Federation, 23–27 января 2022 года. Vol. 1045. – Smolensk, Russian Federation: IOP Publishing Ltd, 2022. – P. 012072. – DOI 10.1088/1755-1315/1045/1/012072. – 0,38 п.л. (авт. 0,31 п.л.).

#### Статьи в прочих изданиях

1. Цедяков, А. А. Анализ датчиков тока для релейных защит и режимов замыканий на землю сельских распределительных сетей 6-10 кВ / А. А. Цедяков // Доклады ТСХА, Москва, 02-04 декабря 2020 года. Том ВЫПУСК 293 Часть III. – Москва: Российский государственный аграрный университет – МСХА имени К.А. Тимирязева, 2021. – С. 39-42.

2. Belov, S. I. Comprehensive assessment of the technical condition of the 10 kV rural electrical network using the MATLAB software at various load factors of the 10/0.4 kV transformer substation / S. I. Belov, A. A. Tsedyakov, M. M. Galkin // Proceedings of SPIE – The International Society for Optical Engineering, 2022.