МЕНБЕРГ ИРИНА ВИКТОРОВНА

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ФЕРМЕНТИРОВАННОГО РАПСОВОГО ШРОТА В КОРМЛЕНИИ ЛАКТИРУЮЩИХ КОРОВ

Специальность

4.2.4 — Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена на кафедре кормления животных в ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева»

Научный руководитель

Буряков Николай Петрович,

доктор биологических наук, профессор, заведующий кафедрой кормления животных, ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева»

Официальные оппоненты:

Боголюбова Надежда Владимировна,

доктор биологических наук, ведущий научный сотрудник, заведующий отделом физиологии и биохимии сельскохозяйственных животных ФГБНУ «Федеральный исследовательский центр животноводства — ВИЖ имени академика Л.К. Эрнста»

Сыроватский Максим Викторович,

кандидат сельскохозяйственных наук, доцент, доцент кафедры кормления и кормопроизводства ФГБОУ ВО «Московская государственная академия ветеринарной медицины и биотехнологии — МВА имени К.И. Скрябина»

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный аграрный университет»

Защита состоится 26 ноября 2025 г. в 11.30 ч. на заседании диссертационного совета 35.2.030.10 на базе ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева» по адресу: 127434, г. Москва, ул. Прянишникова, д. 19, тел.: 8 (499) 976-17-14.

Юридический адрес для отправки почтовой корреспонденции (отзывов): 127434, г. Москва, ул. Тимирязевская, д. 49.

С диссертацией можно ознакомиться в Центральной научной библиотеке имени Н.И. Железнова ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева» и на сайте университета: www.timacad.ru.

Автореферат разослан «___»____ 2025 г.

Ученый секретарь диссертационного совета, кандидат биологических наук

Заикина Анастасия Сергеевна

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Главная задача в молочном скотоводстве — повышение показателей продуктивности лактирующих коров с сохранением высокого качества молока. Для решения этой задачи необходимо использовать рационы, которые удовлетворяют потребности высокопродуктивных коров в энергии, питательных, биологически активных и минеральных веществах. При использовании полноценных и сбалансированных рационов можно достичь показателей продуктивности, которые заложены при рождении и являются генетическим потенциалом (Буряков Н.П. и др., 2009; Каримова В.М., 2022).

В настоящее время актуальными направлениями в оптимизации рационов являются поиск и апробация новых источников протеина отечественного производства. Установлено, что на показатели молочной продуктивности оказывают влияние уровень и показатели качества протеина, поступающего с рационом (Романов Д.В., 2000; Рожнецов А.Л., 2019; Разумовский Н. и др., 2020; Васильев Т.Ю., 2022).

В то же время протеин является одним из самых дорогих компонентов протеина как затраты на источники В рационе рациона, высокопродуктивных коров могут составлять до 55% от его стоимости. Важно отметить, что на эффективность использования протеина влияет множество факторов: в частности, следует выделить качественный состав протеина рациона, соотношение представителей микробиома рубца и обеспеченность их энергией в виде легкопереваримых углеводов, здоровье животных и работу внутренних органов, уровень продуктивности и физиологическое состояние животных (Фаттахова З.Ф. и др., 2019; Баюров Л.И., 2020; Петрова М.Ю. и др., 2021; Буряков Н.П. и др., 2021; Halfen J. и др., 2021; Алигазиев У.А. и др., 2023; Головин А.В., 2024).

Пристальное внимание заслуживают корма и кормовые добавки с высокой долей нерасщепляемого в рубце протеина. Это обусловлено тем, что стандартные источники протеина (подсолнечный, рапсовый, соевый шрот и др.) имеют высокий уровень сырого протеина, однако от его общего количества до 80% приходится на расщепляемый в рубце протеин (Фаттахова 3.Ф. и др., 2019; Ахметзянова Ф.К. и др., 2022).

При использовании традиционных источников протеина в рационе затруднительно достичь норм, рекомендованных ВИЖ, а именно процент содержания нерасщепляемого протеина в сыром протеине на уровне 32-41% в рационе, сохранив при этом высокую рентабельность технологии производства молока. Использование рационов с нарушением процента транзитного протеина в сыром протеине приводит к увеличению нагрузки на желудочно-кишечный тракт лактирующих коров, повышению уровню аммиака и мочевины в крови, увеличению напряженности обменных процессов в печени и росту концентрации мочевины в молоке, что отрицательно влияет на технологические свойства сырого молока при дальнейшей его переработке.

Таким образом, рационы, несбалансированные по протеиновой питательности, приводят к снижению показателей здоровья, молочной

продуктивности, а также функции воспроизводства и качеству получаемой продукции на молокоперерабатывающих заводах (Разумовский Н. и др., 2020; Глухов Д.В., 2021; Васильев Т.Ю., 2023; Мкртчян Г.В. и др., 2023; Тіап К.Е. и др., 2024). В связи с этим направление переработки стандартных источников белка с целью повышения доли транзитного протеина в сыром протеине является актуальным для развития отрасли кормопроизводства и молочного скотоводства.

Следует отметить, что выделяют такие источники транзитного протеина, как рапсовый и соевый шрот, корма животного происхождения, а также специализированные кормовые добавки.

Одним из перспективных источников протеина в рационах для лактирующих коров является рапсовый шрот. Однако содержание в нем нерасщепляемого в рубце протеина составляет от 27,7 до 35,1% в сыром протеине (Бахарева С.О., 2020).

Для повышения транзитного протеина была разработана технология твердофазной ферментации растительного сырья посредством введения микроорганизмов и комплекса ферментов с последующей баротермической обработкой. Кроме изменения уровня нерасщепляемого в рубце протеина в сыром ферментации растительного сырья позволяют разрушить антипитательные факторы, содержащиеся В кормовом сырье, изменить аминокислотный профиль и повысить уровень содержания незаменимых аминокислот. Глубокая баротермическая обработка позволяет сохранить протеин от распада в рубце с последующим перевариванием под действием ферментов сычуга и кишечника и усвоением полученных аминокислот в тонком отделе кишечника (Фаттахова З.Ф. и др., 2019).

Анализ отечественных и зарубежных публикаций и экспериментов подтверждает, что производство и включение в рационы лактирующих коров источников защищенного белка с целью оптимизации протеиновой питательности рациона являются актуальными и положительно влияют на здоровье животных, показатели продуктивности и воспроизводства животных.

Степень разработанности темы исследования. В настоящее время для достижения оптимального уровня нерасщепляемого протеина в рационе необходимо использовать дополнительные корма и кормовые добавки с высоким уровнем транзитного белка.

Исследования А.В. Головина (2024) показали, что введение белковых добавок в виде кукурузного глютена и соевого белкового концентрата не только способствует оптимизации протеиновой питательности рационов, но и положительно влияет на показатели молочной продуктивности, качество молока, переваримость питательных веществ рациона, а также улучшает экономические показатели технологии производства молока.

Результаты исследований С.А. Кудинова (2021) подтверждают положительное влияние кормовых средств. Содержание 60% нерасщепляемого в рубце протеина на основе подсолнечного, рапсового и соевого шрота при взаимодействии с инвертированными сахарами в количестве 1,5-2,5 кг/гол/сут. в рационе лактирующих коров повышает суточный удой до 1,64 л/гол/сут., а также приводит к снижению уровня мочевины в молоке в 1,7 раза.

Зачастую в качестве источников нерасщепляемого в рубце протеина в рационе применяют корма и кормовые добавки животного происхождения. Так, исследования А.А. Алексеева, А.А. Паюты и др. (2020) свидетельствуют о том, что использование белковой кормовой добавки, полученной из дермы крупного рогатого скота и содержащей 425,9 г/кг транзитного протеина, в рационах новотельных коров в количестве 300 и 500 г способствует повышению суточного удоя натуральной и 4%-ной жирности на 1,6-6,2 кг и 5,0-7,0 кг соответственно, а также приводит к росту валового выхода белка и жира с молоком. В данном исследовании установлено, что прибыль от реализации молока возрастает у коров опытных групп по сравнению с контрольной.

Следует отметить, что важно учитывать не только уровень транзитного протеина в рационе, но и его аминокислотный состав и усвояемость в желудочно-кишечном тракте. Так, Д.В. Глухов (2021) рекомендует использовать защищенный метионин для повышения уровня молочной продуктивности, а также интенсификации обменных процессов высокопродуктивных лактирующих коров.

В некоторых случаях источником нерасщепляемого в рубце протеина являются отходы пивоваренного производства: в частности, свежая пивная дробина, содержащая до 60% нерасщепляемого в рубце протеина от сырого протеина. При использовании пивной дробины в количестве 7 кг в рационе в период раздоя исследователями И.В. Вороновой и соавт. (2021) было установлено увеличение суточного удоя на 2,6 кг/сут. и повышение массовой доли белка в молоке на 0,2%.

Согласно исследованиям М.М. Лугового, В.Е. Подольникова, И.С. Луговой (2019) использование кормовой добавки с концентрацией транзитного протеина в сыром протеине 73,8% в количестве 1 кг способствовало увеличению суточного удоя молока на 2,78 кг и позволило оптимизировать рубцовое пищеварение.

Установлено, что играет роль не только уровень транзитного протеина в кормах и кормовых добавках, но и его аминокислотный профиль. Рубцовая микрофлора синтезирует микробиальный протеин, который имеет недостаточное содержание таких незаменимых аминокислот, как лизин и метионин. В результате потребность высокопродуктивных лактирующих коров в незаменимых аминокислотах остается. Для решения этой задачи необходимо использовать кормовые добавки и корма с высокой долей нерасщепляемого в рубце протеина, который представлен преимущественно лизином и метионином.

Таким образом, можно сделать вывод о том, что различные источники транзитного протеина являются инструментами для управления соотношением расщепляемого и нерасщепляемого в рубце протеина в рационах лактирующих коров. Результаты оптимизации питательности рациона способствуют повышению показателей молочной продуктивности, росту качественных характеристик молока, улучшению обменных процессов в содержимом рубца и организме животных при условии повышения рентабельности технологии производства молока.

Цель исследования: повышение показателей молочной продуктивности и качества молока высокопродуктивных коров за счет включения в рационы разного уровня ферментированного рапсового шрота.

В задачи исследования входит:

- 1) анализ питательности кормов, оценить полноценность используемого на предприятии рациона и оптимизированных рецептов для подопытных групп;
- 2) изучить показатели питательности нативного и ферментированного рапсового шрота;
- 3) провести анализ количественных и некоторых качественных показателей молочной продуктивности на протяжении периода лактации;
- 4) оценить анализ биохимических показателей крови у коров в период раздоя и в конце лактации;
- 5) исследовать динамику переваримости питательных веществ у лактирующих коров и баланс азота при использовании рационов с разным уровнем транзитного протеина;
 - 6) определить уровень основных индикаторов работы микробиома рубца;
 - 7) изучить основные показатели воспроизводства у животных;
- 8) рассчитать экономические показатели технологии производства молока при использовании рационов с разным уровнем нерасщепляемого в рубце протеина и подтвердить полученные данные в условиях производственной проверки;
- 9) разработать научно-практические рекомендации по введению рационального уровня ферментированного рапсового шрота в состав рациона и определить перспективы дальнейшей разработки темы.

Научная новизна работы заключается в оптимизации протеиновой питательности рационов для лактирующих коров на протяжении лактации путем увеличения в них доли нерасщепляемого протеина с помощью введения отечественного кормового средства — ферментированного рапсового шрота — с последующим изучением ряда зоотехнических, физиологических и экономических показателей и производственной проверкой лучшего варианта рациона в условиях предприятия ООО «Дельта-Ф» Московской области.

Теоретическая и практическая значимость работы. Полученные в ходе исследования результаты свидетельствуют о том, что оптимальный уровень введения в состав рациона для лактирующих коров ферментированного рапсового шрота (50% взамен нативного рапсового шрота) позволяет оптимизировать рубцовое пищеварение, улучшает протеиновый обмен в организме, повышает показатели молочной продуктивности и качество молока, улучшает воспроизводительную функцию и способствует росту рентабельности технологии производства молока.

Методология и методы исследований. Исследование по изучению рационов с оптимизированной протеиновой питательностью в результате включения ферментированного рапсового шрота проводили в условиях молочнотоварной фермы ООО «Дельта-Ф» в с. Фёдоровское Сергиево-Посадского района Московской области.

Во время проведения опыта были применены актуальные общепринятые методики и современные методы. Изучены зоотехнические, физиологические и экономические показатели у высокопродуктивных лактирующих коров на протяжении периода лактации. Анализ полученных результатов проведен в соответствии с требованиями статистической обработки: был использован расчет

средней арифметической и взвешенной ошибки, а также определена достоверность полученных результатов по t-критерию Стьюдента. Рациональный уровень ввода ферментированного рапсового шрота был проверен в условиях производственной апробации на большем поголовье.

Основные положения, выносимые на защиту:

- 1. Замена натурального рапсового шрота на ферментированный рапсовый шрот (в соотношении 50:50 и 0:100) позволяет оптимизировать протеиновую питательность рационов для лактирующих коров.
- 2. Использование оптимизированных рационов с включением ферментированного рапсового шрота позволяет увеличить количественные и качественные показатели молочной продуктивности на протяжении периода лактации.
- 3. Применение рационов с оптимальным уровнем нерасщепляемого в рубце протеина в сыром протеине оказывает положительное влияние на воспроизводительную функцию у лактирующих коров.
- 4. Введение ферментированного рапсового шрота взамен традиционных источников протеина позволяет повысить выделение азота с молоком и баланс азота в организме лактирующих коров.
- 5. Использование рационов с заменой 50%-ного нативного рапсового шрота на ферментированный рапсовый шрот способствует увеличению рентабельности технологии производства молока.

Степень достоверности и апробация результатов. Схема эксперимента, используемые методики и методы научно-исследовательской работы были согласованы на ученом совете Института зоотехнии и биологии и на конференциях разного уровня.

По результатам выполненного исследования опубликовано 5 статей, включая 2 статьи в журналах перечня ВАК, принято участие в 4 конференциях, поданы 2 заявки на РИДы (2024138506 от 19.12.2024 г.; 2024138507 от 19.12.2024 г.).

Материалы диссертации доложены, обсуждены и получили положительную оценку на конференциях, конкурсах научных работ и выставках:

- 1. Конкурс «Лучшие на АГРОС-2025» в номинации «Кормовые решения». Раздел «Современные технологии повышения качества кормов (зерновых, бобовых, масличных, грубых, сочных и т.п.)», наименование продукта: «КаноЛак».
- 2. Отраслевой конкурс «Золотая медаль» в рамках выставки «Агрорусь-2024». Номинация «За достижения в области инноваций в АПК: За достижения в области сельскохозяйственной науки». Проект «Эффективность применения функционального полипептидного комплекса, произведенного по технологии твердофазной ферментации рапсового шрота».
- 3. Конкурс «Инновации в комбикормовой промышленности» на базе выставки «Зерно-Комбикорма-Ветеринария 2023». Проект «Функциональный полипептидный комплекс, произведенный методом твердофазной ферментации растительного сырья, используемый в кормлении молочного скота». Номинация «Компоненты для производства комбикормов и премиксов».
- 4. XXX Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов-2023».

- 5. Международная научно-практической конференции «Перспективы устойчивого развития аграрно-пищевых систем на основе рационального использования региональных генетических и сырьевых ресурсов».
- 6. Международная научная конференция молодых ученых и специалистов, посвященная 180-летию со дня рождения К.А. Тимирязева, 2023.
- 7. Международная научная конференция молодых ученых и специалистов, посвященная 160-летию Тимирязевской академии, 2025.

Публикации результатов исследования. Результаты исследований и материалы диссертации опубликованы в 5 научных работах, в том числе 2 статьи в рецензируемых научных изданиях, рекомендованных ВАК Министерства науки и высшего образования РФ.

Структура и объем работы. Диссертация изложена на 152 страницах машинописного текста. Состоит из введения, основной части, содержащей 19 рисунков, 21 таблицу, заключения, списка литературы, включающего в себя 195 наименований, в том числе 46 — на иностранном языке, перечня принятых сокращений и 13 приложений.

2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ

Для проведения эксперимента в качестве базы исследований была выбрана молочно-товарная ферма ООО «Дельта-Ф», расположенная в Московской области. Опыт проводился на производственном комплексе, рассчитанном на содержание 750 лактирующих коров, в селе Федоровское Сергиево-Посадского района.

Объект исследования: высокопродуктивные лактирующие коровы голштинской породы на протяжении 305 сут. лактации.

Предмет эксперимента: изучение влияния рационов с заменой натурального рапсового шрота на ферментированный рапсовый шрот в соотношении 0/50/100% на основные показатели продуктивности, обменных процессов, воспроизводства и экономические показатели.

Формирование экспериментальных групп животных осуществлялось с использованием общепринятых и методологически обоснованных подходов. Подопытные группы были сформированы по методу пар-аналогов во второй половине сухостойного периода с учетом породной принадлежности, происхождения, возраста, живой массы и т.д. На протяжении опыта животные были клинически здоровы и находились в одинаковых условиях содержания.

Изучение влияния рационов с разным уровнем транзитного протеина проводили после отела на протяжении периода лактации (рис.1).

В начале лактации коровы контрольной группы получали 2,5 кг натурального рапсового шрота, в середине лактации -2,0, в конце ее -1,5 кг. Рационы контрольной и опытных групп отличались соотношением в рационе между натуральным и ферментированным рапсовым шротом: контрольная группа получала 100% натурального рапсового шрота, первая опытная -50% натурального и 50% ферментированного рапсового шрота, вторая опытная -100% ферментированного рапсового шрота.

Эффективность применения ферментированного рапсового шрота в кормлении высокопродуктивных коров							
Объект исследования: высокопродуктивные лактирующие коровы 2-й, 3- й лактации (n=15)							
	Группа						
Контрольная Первая опытная Вторая опытная							
•		Разработка оптимиз	ированных рационов		210		
Основной рацион (OP) + 2,5/2,0 рапсового шр	' ''	OP + 1,25/1,0/0,75 кг натур	ального рапсового шрота + ованного рапсового шрота	OP + 2,	,5/2,0/1,5 ферментиро	ванного рапсового шрота	
		Изучаемые	показатели	-			
Химический состав и питательность кормов и анализ рационов	питательность кормов и продуктивность коров Микрофлора рубца микробиома и основные показатели крови качества коров					Воспроизводительные качества коров	
 Жимический состав натурального и ферментированного рапсового шрота Анализ питательности рационов контрольной и опытных групп 	 Суточный удой молока натуральной жирности Валовой выход молока натуральной и 4%-ной жирности Массовая доля белка Массовая доля жира Валовой выход белка Валовой выход жира Сухое вещество Мочевина 	■Бактерий > Группы микроорганизмов: ■ Нормофлора ■ Нежелательная флора ■ Патогенные бактерии	 Метаболиты микробиома посновные индикаторы руби рН Аммиак Общее количество ЛЖК Молярное соотношение лежирных кислот: Уксусная Пропионовая Масляная Другие ЛЖК 	ца:	 ▶ Глюкоза ▶ Общий белок ▶ Мочевина ▶ Креатинин ▶ АСТ ▶ АЛТ > ЩФ > ЛДГ > Амилаза 	 Индекс осеменения Продолжительность сервис-периода 	
	Производственная	проверка рационального ур	овня ввода ферментированного	рапсовог	го шрота		
Экономическая эффективность использования ферментированного рапсового шрота							
	Предложения производству, перспективы дальнейшей разработки темы						

Рис. 1. Схема исследования

Определение питательности кормов и анализ рационов. С целью оценки полноценности и сбалансированности кормления лактирующих коров был проведен анализ компонентного состава рациона, а также выполнено сопоставление его питательной ценности с рекомендуемыми нормами ВИЖ (2016). Для проведения оценки были отобраны образцы кормов, которые впоследствии подвергались высушиванию и измельчению. Отбор проб осуществлялся в соответствии с требованиями ГОСТ Р ИСО 6497-2011 «Корма для животных. Отбор проб». В ходе анализа были получены данные по питательности кормов с использованием общепринятых методик по соответствующим ГОСТам.

<u>Молочная продуктивность коров.</u> Учет молочной продуктивности осуществлялся методом контрольных доений с периодичностью один раз в декаду.

Образцы молока отбирали у коров контрольной и опытных групп. Среднюю пробу хранили при температуре 4-6 °C до проведения анализов в лаборатории кафедры кормления животных ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева на анализаторе «Лактан 600 Ультра» (сухое вещество, массовая доля жира и белка).

<u>Физиологический опыт.</u> В конце третьего месяца лактации были отобраны по 3 гол. коров из каждой группы для проведения физиологического (балансового) опыта. В этот период раздачу кормосмеси животным осуществляли индивидуально вручную, количество заданных и потребленных кормов фиксировали ежедневно путем взвешивания компонентов рациона и его остатков.

Также производили учет выделения кала, мочи и молока путем фиксации их количества на протяжении 5 суток эксперимента. Отбор средних проб компонентов рациона, молока, мочи, кала, их консервирование, транспортировку, хранение и пробоподготовку проводили по общепринятым методикам (Лукашик Н.А., Тащилин В.А., 1965).

Отбор проб крови и их анализ. Забор крови у коров осуществляли на протяжении всего периода лактации. Отбор образцов производили из хвостовой вены через 3 ч после утреннего кормления на всех этапах эксперимента. Биохимический анализ сыворотки крови по основным показателям выполнялся в лаборатории ООО «Шанс Био», а также на кафедре кормления животных ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева.

Отбор рубцового содержимого и его анализ. Отбор проб рубцовой жидкости осуществляли до первого кормления с использованием рубцового зонда. Значение рН определяли с помощью рН-метра, аммиака — микродиффузным методом, а уровень ЛЖК — на аппарате Маркгама. Профиль ЛЖК определяли путем хроматографии.

Статистический анализ. Математическую и статистическую обработку данных производили стандартными методами корреляционного и дисперсионного анализа по В.С. Антоновой и др. (2011), Е.К. Меркурьевой и др. (1970) с использованием персонального компьютера. Достоверность разности оценивали по t-критерию Стьюдента, разность считали достоверной по отношению к контролю при р <0,05.

3. Результаты исследования 3.1. Анализ суточного рациона коров

На предприятии животным скармливают полносмешанный рацион, который разделяют на 2 дачи: первое кормление проводят в 7:00, второе – в 14:30.

В зависимости от фазы лактации и уровня продуктивности состав рационов и показатели их питательности имели различия (табл. 1).

Таблица 1 – Состав рационов подопытных коров, кг

	ица г состав рациот		
		В период	В период
	В период раздоя с	середины	завершения
Показатель	продуктивностью	лактации с	лактации с
	35 кг молока	продуктивностью	продуктивностью 25
		30 кг молока	кг молока
Силос кукурузный	21,9	5,1	_
Сенаж клеверный	19,7	11,8	18,4
Сенаж разнотравный	3,1	31,2	32,4
Комбикорм:	12,67	11,65	9,05
дерть кукурузы	5,4	5,1	4,3
дерть ячменя	3,1	2,9	1,9
рапсовый шрот	2,5	2,0	1,5
дерть сои экструдированная	1,5	1.5	1.2
обезжиренная	1,3	1,5	1,2
Премикс	0,17	0,15	0,15

Рационы, используемые на предприятии, являются сбалансированными и соответствуют нормам (ВИЖ, 2018). Однако уровень нерасщепляемого протеина (в сыром протеине) в рационах на протяжении лактации был ниже нормы (табл. 2).

Таблица 2 – Анализ концентрации нерасщепляемого в рубце протеина в сыром протеине фактических рационов, %

	Нерасщепляемый в	рубце протеин	
Показатель	в сыром протеине, %		
	Требуется по норме	Содержится в	
	ВИЖа (2018)	рационе	
Рацион для коров, используемый в период раздоя с продуктивностью 35 кг молока	38,2	35,7	
Рацион для коров, используемый в период середины лактации с продуктивностью 30 кг молока	3,1	31,2	
Рацион для коров, используемый в период завершения лактации с продуктивностью 25 кг молока	34,9	32,7	

По данным таблицы 2 установлено, что в первую, вторую и третью фазы лактации содержание нерасщепляемого протеина в рубце в сыром протеине рациона было ниже нормы на 2,5%; 2,2; 2,3% соответственно. Для оптимизации протеиновой питательности рациона и повышения уровня транзитного протеина было рассмотрено использование ферментированного рапсового шрота взамен натурального рапсового шрота.

3.2. Химический состав и питательность натурального и ферментированного рапсового шрота

С целью оптимизации протеиновой питательности рациона, в частности, увеличения уровня транзитного протеина, в рационе была проведена замена разного количества рапсового шрота на ферментированный рапсовый шрот – кормовое средство «КаноЛак».

Установлено, что натуральный и ферментированный рапсовый шрот имеет некоторые различия по показателям обменной энергии, сухому веществу, сырому, расщепляемому и нерасщепляемому в рубце протеину, сырой клетчатке, сырому жиру и другим показателям

Нами подробно изучены показатели, характеризующие протеиновую питательность натурального и ферментированного рапсового шрота (рис. 2).

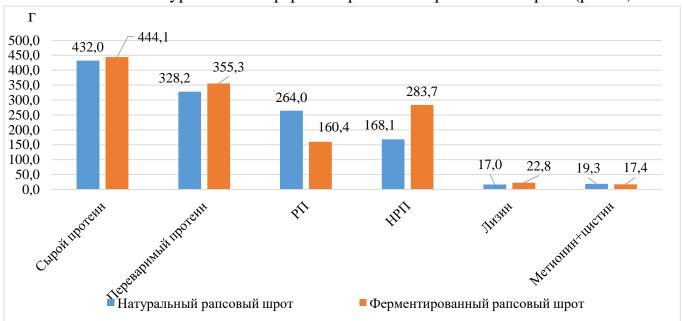


Рис. 2. Протеиновая питательность натурального и ферментированного рапсового шрота

Различия в питательной ценности нативного и ферментированного рапсового шрота были учтены при оптимизации рационов и определении оптимального уровня ввода данных компонентов.

3.3. Анализ оптимизированных суточных рационов кормления коров

В ходе эксперимента разработаны рационы с заменой нативного рапсового шрота на ферментированный рапсовый шрот в количестве:

- 50% для коров первой опытной группы;
- 100% для коров второй опытной группы.

Анализ питательной ценности рационов контрольной и опытных групп в течение периода лактации показал, что применяемые в исследовании рационы были сбалансированными. При этом различий по основным показателям питательности между группами не выявлено за исключением соотношения между транзитным и расщепляемым в рубце протеином.

3.4. Оценка показателей молочной продуктивности коров 3.4.1. Количественные показатели молочной продуктивности коров за период раздоя и всю лактацию

Введение в состав рационов ферментированного рапсового шрота привело к повышению основных показателей молочной продуктивности — валового и суточного удоя молока натуральной и 4%-ной жирности (табл. 3).

Таблица 3 — Суточный и валовой удой молока коров натуральной и 4%-ной жирности за период раздоя и лактации (n = 15), кг

за перпод раздол г	Группа			
Показатель	Г омтрону над	Опытная		
	Контрольная	1-я	2-я	
Период разд	оя (122 сут.)			
Суточный удой молока натуральной жирности	34,9±1,8	$35,7\pm1,2$	35,3±2,1	
% к контролю	100,0	102,3	101,1	
Суточный удой молока 4%-ной жирности	33,2±0,9	34,4±0,8	33,8±1,2	
% к контролю	100,0	103,6	101,8	
Валовой удой молока натуральной жирности	4196,8±48,6	4331,0±37,5*	4233,4±53,1	
% к контролю	100,0	103,2	100,9	
Валовой удой молока 4%-ной жирности	4055,6±36,4	4192,1±39,5*	4123,6±31,4	
% к контролю	100,0	103,4	101,7	
Вся лактаци	я (305 сут.)			
Суточный удой молока натуральной жирности	29,7±1,6	30,6±1,7	30,1±1,8	
% к контролю	100,0	103,0	101,3	
Суточный удой молока 4%-ной жирности	$28,1\pm1,5$	$29,2\pm1,7$	28,6±1,6	
% к контролю	100,0	103,9	101,8	
Валовой удой натуральной жирности	$9052,4\pm 48,4$	9329,9± 52,1*	$9165,3\pm 49,2$	
% к контролю	100,0	103,1	101,2	
Валовой удой молока 4%-ной жирности	8577,1±51,1	8910,1±56,0*	8707,0±54,2	
% к контролю	100,0	103,9	101,5	

Примечание. * p<0,05 – достоверность разности по сравнению с контрольной группой.

При введении ферментированного рапсового шрота в количестве 50% взамен традиционного рапсового шрота установлено наибольшее увеличение валового удоя молока натуральной и 4%-ной жирности за период раздоя: на 3,2 и 3,4% соответственно (разность достоверна, p<0,05).

В свою очередь, у коров второй опытной группы, которым полностью заменили натуральный рапсовый шрот на ферментированный, наблюдалось также повышение показателей молочной продуктивности по сравнению с контрольной группой.

Аналогичная тенденция по повышению рассматриваемых показателей молочной продуктивности зафиксирована и на протяжении всего периода лактации.

Таким образом, замена 50%-ного натурального рапсового шрота на ферментированный рапсовый шрот позволила увеличить суточный и валовой удой молока натуральной и 4%-ной жирности на протяжении всего периода лактации.

Для полной оценки показателей молочной продуктивности у подопытных коров был проведен анализ массовой доли молочного жира и белка, а также концентрации сухого вещества и мочевины в молоке (табл. 4).

Таблица 4 — Массовая доля жира, белка, сухого вещества и мочевины в молоке за период раздоя и лактацию (n = 15), %

	Группа			
Показатель	L'avena ex vae	Опытная		
	Контрольная	1-я	2-я	
Период ра	аздоя (122 сут.)			
Массовая доля жира в молоке, %	3,81±0,22	$3,85\pm0,34$	3,83±0,17	
Массовая доля белка в молоке, %	3,18±0,06	3,23±0,04	3,26±0,05	
Сухое вещество, %	12,12±0,29	12,20±0,36	12,28±0,15	
Содержание мочевины, мг/%	19,21±0,94	$18,98\pm0,50$	18,44±1,17	
Вся лакт	ация (305 сут.)			
Массовая доля жира в молоке, %	$3,79\pm0,03$	$3,82\pm0,03$	3,80±0,03	
Массовая доля белка в молоке, %	3,27±0,09	$3,30\pm0,08$	3,29±0,08	
Сухое вещество, %	12,49±0,23	12,56±0,24	12,52±0,15	
Содержание мочевины, мг/%	19,16±0,23	18,39±0,49	18,13±0,95	

Анализируя данные таблицы 4, необходимо отметить, что массовая доля молочного жира была выше у коров первой и второй опытных групп в период раздоя по сравнению с контрольной на 0,04 и 0,02 абс.%, а белка — на 0,05 и 0,08 абс.% соответственно. Показано, что концентрация сухого вещества была также выше у коров опытных групп на 0,08 и 0,16 абс.%, а мочевины — напротив, меньше на 0,23 и 0,77 абс.%.

Из полученных данных следует, что замена натурального рапсового шрота на ферментированный рапсовый шрот имеет тенденцию улучшения состава молока. Это подтверждают результаты анализа молока за весь период лактации.

3.4.2. Качественные показатели молочной продуктивности коров за период раздоя и всю лактацию

В ходе опыта были изучены основные показатели качества молока (табл. 5). Таблица 5 – Валовой выход белка и жира с молоком коров (n = 15), кг

Tuesmigue Zuriezen zenteg euntu it zurpu e mestenem nepez (it. 10), iti						
	Группа					
Показатель	Volument upg	Опы	тная			
	Контрольная	1-я	2-я			
Период ра	аздоя (122 сут.)					
Валовой выход белка за период раздоя	133,5±1,4	139,9±1,6*	138,0±1,5*			
% к контролю	100,0	104,8	103,4			
Валовой выход жира за период раздоя	159,9±5,4	166,7±4,1	162,1±5,2			
% к контролю	100,0	104,3	101,4			
Вся лакта	ация (305 сут.)					
Валовой выход белка за лактацию	296,0±1,7	307,9±2,2*	301,5±1,9*			
% к контролю	100,0	104,0	101,9			
Валовой выход жира за лактацию	343,1±4,1	356,4±4,3*	348,3±4,2			
% к контролю	100,0	103,9	101,5			

Примечание: *Разность достоверна при р <0,05 (при сравнении контрольной и первой опытной групп).

По данным таблицы 5 установлено, что оптимизированные рационы с включением ферментированного рапсового шрота в соотношении 50 и 100% взамен рапсового шрота способствуют не только увеличению массовой доли молочного белка и жира, но и валовому выходу их с молоком.

У коров первой и второй опытных групп возрастает валовой выход молочного белка за период раздоя и за лактацию по сравнению с контрольной на 3,4-4,8% и 1,9-4,0% соответственно (p<0,05).

По результатам исследования показано, что у коров второй опытной группы наблюдается тенденция повышения валового выхода жира за лактацию по сравнению с контрольной группой. В свою очередь, у коров первой опытной группы валовой выход молочного жира выше, чем у контрольной, на 3,9%, составляя 356,4 кг (разность достоверна).

В ходе опыта был произведен расчет суммарного выхода белка и жира с молоком (рис. 3).

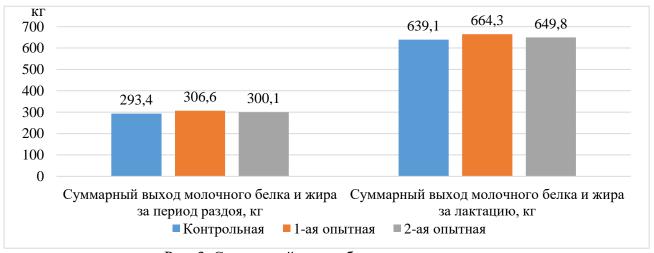


Рис. 3. Суммарный выход белка и жира с молоком, кг

Установлено, что у опытных групп, получающих ферментированный рапсовый шрот, повышается суммарный выход молочного белка и жира за период раздоя на 6,7-13,2 кг, а за всю лактацию – на 10,7-25,2 кг.

Анализ количественных и качественных показателей молочной продуктивности свидетельствует о положительном влиянии оптимизированных рационов с заменой 50- и 100%-ного натурального рапсового шрота на ферментированный рапсовый шрот.

3.5. Анализ показателей крови 3.5.1. Биохимические показатели крови в конце периода раздоя

В рамках проведенного эксперимента для оценки состояния обмена веществ у подопытных животных были исследованы основные биохимические показатели крови, отражающие белковый, липидный и углеводный обмен (табл. 6).

Таблица 6 – Биохимические показатели крови в период раздоя (n = 5)

			Группа			
	Единица Физиоло-		1 pyiiia			
Показатель	измере-	гическая	Контроль-	Опытная		
	ния	норма	ная			
		1		1-я	2-я	
Общий белок	г/л	70-92	83,5±2,46	75,7±2,28*	$80,7\pm2,27$	
Мочевина	ммоль/л	2,4-7,5	4,03±0,14	3,90±0,14	4,87±0,26* **	
ACT	Ед/л	41-107	87,3±3,19	85,3±2,86	87,7±1,47	
АЛТ	Ед/л	10-36	30,3±2,16	28,3±1,47	34,3±2,86	
Глюкоза	ммоль/л	2,0 - 4,8	2,10±0,29	2,43±0,23	2,47±0,22	
Креатинин	мкмоль/л	62 - 163	70,7±1,47	70,3±1,08	69,3±1,78	
Билирубин общий	мкмоль/л	1,16-8,15	3,80±0,07	4,07±0,14	3,97±0,22	
Щелочная фосфатаза	Ед/л	31-163	48,3±1,06	43,7±1,08*	46,7±3,19	
Лактатдегидрогеназа	Ед/л	692 - 1500	1106,3±20,10	971,7±20,98*	1006,2±27,65	
Альфа-амилаза общая	Ед/л	< 98	82,3±3,89	84,7±3,34	79,3±1,06	

Примечание: *Разность достоверна при р <0,05 (при сравнении контрольной и первой опытной групп).

При выполнении анализа показателей крови коров было установлено, что их биохимические значения у контрольной и опытной групп находятся в пределах физиологической нормы.

Уровень общего белка в крови коров первой опытной группы меньше по сравнению с контрольной группой на 9,4% (разность достоверна), что, вероятно, свидетельствует о повышении эффективности использовании протеина рациона.

Уровень мочевины выше у коров второй опытной группы, получающих более высокий уровень нерасщепляемого в рубце протеина в рационе, на 8,4 ммоль/л (разность достоверна).

Уровень щелочной фосфатазы и лактатдегидрогеназы в крови снижается в крови у животных первой и второй опытных групп. Концентрация щелочной фосфатазы и лактатдегидрогеназы в крови у коров первой опытной группы ниже, чем у контрольной, на 9,6 и 12,2% соответственно (разность достоверна).

3.5.2. Биохимические показатели крови в конце лактации

Анализ биохимических показателей крови в конце лактации у коров контрольной и опытных групп показал, что они соответствуют физиологической норме. У коров опытных групп сохраняются тенденции изменения биохимических показателей крови, полученных в период раздоя.

Таким образом, можно сделать вывод о том, что использование оптимизированных рационов с включением ферментированного рапсового шрота взамен 50%-ного способствует оптимизации обменных процессов в организме, что наиболее выражено в период раздоя.

^{**}Разность достоверна при р <0,05 (при сравнении первой и второй опытной групп).

3.4. Баланс питательных веществ

3.4.1. Переваримость питательных веществ рационов

По данным потребления кормов и анализов кала во время балансового опыта была рассчитана переваримость питательных веществ у животных (рис. 4).

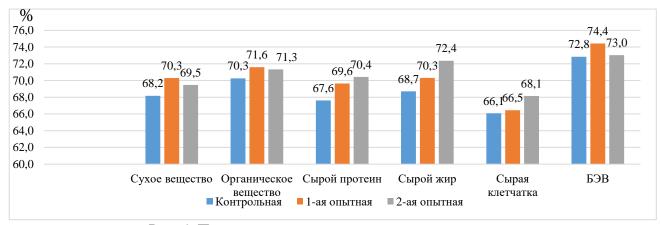


Рис. 4. Переваримость питательных веществ рациона

По результатам оценки переваримости питательных веществ рациона установлено, что переваримость сухого и органического вещества, сырого протеина, жира и клетчатки, а также безазотистых экстрактивных веществ выше у опытных групп по сравнению с контролем.

У второй опытной группы переваримость сырого протеина, жира и клетчатки выше показателей переваримости первой опытной группы.

3.4.2. Среднесуточный баланс азота

По данным балансового опыта был произведен расчет баланса азота в организме лактирующих коров (табл. 7).

Таблица 7 – Среднесуточный баланс азота у коров, г

Показатель	Группа				
показатель	Контрольная	Опытная 1	Опытная 2		
Принято азота с кормосмесью, г	$545,88\pm10,98$	618,03±4,54*	606,19±5,67*		
Выделено с калом, г	176,59±7,67	187,69±3,00	179,37±6,14		
Переварено, г	369,3±16,80	430,34±6,16*	427,06±7,36*		
Выделено с мочой, г	181,79±14,70	219,14±20,64	207,93±18,76		
Выделено с молоком, г	189,22±5,94	208,98±6,06	215,58±1,74*		
от принятого, %	$34,65\pm0,43$	33,81±0,81	35,56±0,41		
от переваренного, %	49,31±3,73	48,56±0,74	50,51±1,20		
Усвоено, г	187,51±4,68	211,2±6,04*	219,23±1,71*		
от принятого, %	34,33±0,48	34,17±0,78	36,16±0,46		
от переваренного, %	50,87±1,97	49,07±0,72	51,37±1,25		
Баланс, г	$-1,71\pm2,36$	2,23±0,44	3,65±0,35		

Примечание: *Разность достоверна при р <0,05 (при сравнении контрольной и первой опытной групп).

Установлено, что количество переваренного азота выше у коров первой опытной группы на 16,5%, а у второй опытной группы — на 15,6%. Количество азота, выделенного с молоком, выше у коров опытных групп и составило 208,98 и 215,58 г против контрольной группы (189,22 г).

Баланс азота у коров контрольной группы отрицательный, а у животных опытных групп баланс азота является положительным, что свидетельствует о высокой эффективности усвоения азота в организме.

3.6. Исследование содержимого рубца 3.6.1. Основные индикаторы рубцового пищеварения

Оценка основных индикаторов рубца выполнена у коров контрольной и опытных групп (табл. 8).

Таблица 8 – Основные индикаторы рубцового пищеварения (n = 3)

	•	1 12	·	,
			Группа	
Показатель	Норма	Опытна		тная
		Контрольная	1-я	2-я
рН, ед.	6,3-7,2	6,36±0,05	6,50±0,05	6,45±0,07
ЛЖК, мМоль/л	8,0-15,0	88,37±2,94	100,47±6,71	92,23±12,78
Аммиак, мг%	5,0-20,0	19,61±2,23	15,92±2,81	12,48±1,76

рН рубцового содержимого всех трех групп укладывается в допустимый диапазон нормы, однако в опытных группах все же ближе к нормальному значению по сравнению с контролем. Уровень ЛЖК в содержимом рубца опытных групп выше на 3,86-12,1 ммоль/л. В содержимом рубца у опытных групп количество аммиака ниже на 3,69-7,13 мг/100 мл, чем в контрольной. Вероятно, это обусловлено снижением уровня расщепляемого протеина до физиологической нормы в оптимизированных рационах коров опытных групп.

3.6.2. Качественный и количественный состав летучих жирных кислот

Для оценки количества и соотношения летучих жирных кислот в содержимом рубца у подопытных коров было выполнено их определение (табл. 9).

Таблица 9 – Содержание ЛЖК в рубцовой жидкости

		Группа		
Показатель	Норма, %	V отпрод тод	Опыти	ная
		Контрольная	1-я	2-я
Уксусная	55-75	65,21±0,49	66,59±1,40	64,88±1,07
Пропионовая	15-25	18,18±0,13	18,50±0,78	18,71±1,32
Масляная	10-17	12,62±0,41	11,26±0,79	12,24±1,34
Прочие ЛЖК	до 5	3,99±0,12	3,65±0,18	4,17±0,27

На основании проведенных исследований можно сделать вывод о том, что индикаторы работы рубца у коров всех групп – в пределах нормальных значений. Однако между группами есть отличия. Повышение уровня уксусной кислоты в первой опытной группе свидетельствует о более эффективном развитии целлюлозолитической микрофлоры в рубце. В рубцовом содержимом коров опытных групп количество пропионовой кислоты больше. Как следствие, молочная продуктивность у этих групп выше, что и подтверждают показатели молочной продуктивности.

3.7. Воспроизводительная функция лактирующих коров

Для оценки воспроизводительной функции был произведен учет таких показателей, как длительность сервис-периода и индекс осеменения (табл. 10).

Tr ~	10	U		
Гаолина	10 — Анализ	показателей	воспр	оизволства
1000111140	10 11111111	110110001111111	20011p	0110207

	Группа (n = 15)			
Показатель	Vонтроні нод	Опытная		
	Контрольная	1-я	2-я	
Длительность сервис-периода, сут.	118±6	116±6	113±4	
Индекс осеменения, ед.	2,0±0,25	1,7±0,22	1,4±0,17	

Из данных табл. 10 следует, что у коров, в состав рационов которых вводится ферментированный рапсовый шрот, сокращается продолжительность сервиспериода на 2-5 сут., а также снижается индекс осеменения на 0,3-0,6 ед.

Следует отметить, что при 100%-ной замене натурального на ферментированный рапсовый шрот в большей степени выражено улучшение основных показателей воспроизводства.

3.8. Расчет экономической эффективности применения рационов с разным уровнем включения ферментированного рапсового шрота

Расчет данных показателей экономической эффективности представлен в таблице 11.

Таблица 11 — Расчет экономической эффективности применения рационов с разным уровнем включения ферментированного рапсового шрота

включения ферментированного рапсового шрота							
	Группа						
Показатель	Контроль	Опытная					
	ная	1-я	2-я				
Валовой удой на 1 корову, кг	9052,4	9329,9	9165,3				
Валовой удой молока с учетом показателей товарности фермы (92%) и базисной жирности молока 3,6%	8767,8	9108,1	8900,5				
Прибавка валового удоя молока с учетом показателей товарности фермы и базисной жирности молока	-	340,3	132,8				
Затраты на 1 корову, относимые на себестоимость молока, руб.	269573,2	271845,2	274919,5				
в том числе затраты на оптимизацию рационов с введением кормового средства на 1 гол. за период опыта, руб.	-	5718,75	11437,5				
в том числе затраты на количество спермодоз, трудозатраты специалиста по искусственному осеменению и учет недополученной прибыли ввиду увеличения сервис-периода	17011,2	13564,48	10920				
Цена реализации 1 кг молока, руб.	40,32	40,32	40,32				
Себестоимость 1 кг молока, руб.	29,78	29,14	30,00				
Прибыль от реализации молока, руб.	51277,76	62119,96	52118,00				
Выручка от реализации молока, руб.	320850,92	333965,15	327037,46				
Прирост выручки за период опыта по отношению к контрольной группе, руб.	-	13114,24	6186,54				
Уровень рентабельности производства молока, %	19,0	22,9	19,0				

Из данных таблицы 11 можно сделать следующий вывод: оптимизация протеиновой питательности рационов путем введения ферментированного рапсового шрота приводит к увеличению затрат, однако способствует приросту выручки на 6186,54-13114,24 руб. за период опыта. Расчет показателя уровня рентабельности производства молока свидетельствует о том, что ее максимальное значение — у коров первой опытной группы, который составляет 22,9% против 19,0% у контрольной и второй опытной групп.

3.9. Производственная проверка

Были проведены испытания по оценке эффективности рациональной нормы ввода ферментированного рапсового шрота в период раздоя, установленной ранее (табл. 12).

Таблица 12 — Схема проведения производственных испытаний рационального уровня ввода ферментированного рапсового шрота

Вариант	Количество	Особенности кормления		
рациона	гол.	Осооенности кормления		
Базовый	100	Основной рацион (ОР) – 2,5 кг натурального рапсового шрота		
Новый	ор — 1,25 кг ферментированного рапсового шрота и 1,2 натурального рапсового шрота (замена 1:1)			

Результаты производственной проверки и продуктивность лактирующих коров приведены в таблице 13.

Таблица 13 – Продуктивность коров и экономическая эффективность включения ферментированного рапсового шрота

Показатель		Вариант рациона		
		базовый	новый	
Удой молока натуральной	й жирности, кг	30,2	31,7	
Удой молока 4%-ной жир	оности, кг	28,8	30,6	
Валовой удой натурально	ой жирности, кг	3624,0	3804,0	
Валовой удой молока 4%	-ной жирности, кг	3456,0	3672,0	
Содержание, %:	жира	3,81	3,86	
	белка	3,26	3,31	
Выход, кг:	жира	138,1	146,8	
	белка	118,1	125,1	
Затраты концентрировані	ных кормов на 1 кг молока, г	511	489	
Общие затраты на производство молока, руб.		95 888,8	99 344,5	
Цена реализации молока, руб/кг		32,7	32,7	
Денежная выручка от реализации молока		118 504,8	124 390,8	
	к базовому варианту	-	5 886,0	
Прибыль от реализации молока, руб.*		22 616,0	25 046,3	
Уровень рентабельности,	%	23,6	25,2	
	к контролю	-	+1,6	

Примечание: *Расчет на 1 гол.

Включение ферментированного рапсового шрота способствовало повышению удоя молока за период раздоя, а также выхода жира и белка с молоком, что позволило повысить уровень рентабельности на 1,6%.

5. Заключение

В результате проведенных исследований по оценке эффективности применения ферментированного рапсового шрота в кормлении высокопродуктивных коров было установлено:

- 1. По результатам исследования используемых кормов и кормовых средств зафиксировано, что применяемые в хозяйстве рациона соответствуют нормам ВИЖа (2018). Однако следует отметить, что на предприятии в рационах контрольной группы процент нерасщепляемого в рубце протеина на 2,5; 2,2; 2,3% соответственно ниже рекомендуемых норм. С целью оптимизации протеиновой питательности рациона были разработаны рационы с частичной (50%) или полной заменой (100%) натурального на ферментированный рапсовый шрот, отличающиеся высоким уровнем транзитного протеина и большей концентрацией незаменимых аминокислот.
- 2. Анализ питательности разработанных рационов показал, что они не имеют достоверных различий по энергетической, минеральной и витаминной питательности, однако отличаются разным уровнем нерасщепляемого в рубце протеина.
- 3. Анализ количественных и качественных показателей молочной продуктивности свидетельствует о положительном влиянии оптимизированных рационов с заменой 50- и 100%-ного натурального рапсового шрота на ферментированный рапсовый шрот.

У коров первой опытной группы установлено увеличение валового удоя молока натуральной и 4%-ной жирности на протяжении лактации на 3,1 и 3,9% соответственно, а также повышение валового выхода молочного белка и жира на 4,0 и 3,9% соответственно по сравнению с контрольной группой (р <0,05).

У коров второй опытной группы, получавших рационы со 100%-ной заменой натурального рапсового шрота на ферментированный рапсовый шрот на протяжении лактации, зафиксирован рост валового выхода молочного белка на 1,9% по сравнению с животными контрольной группы (р <0,05).

При использовании оптимизированных рационов с введением ферментированного рапсового шрота у коров опытных групп установлена тенденция снижения уровня мочевины в молоке с увеличением его нормы ввода.

4. При анализе показателей крови коров было установлено, что их биохимические значения у контрольной и опытной групп находятся в пределах референсных значений. Однако в период раздоя установлено, что уровень общего белка в крови коров первой опытной группы меньше по сравнению с контрольной группой на 9,4% (р <0,05).

Уровень мочевины в крови выше у коров второй опытной группы, получающих более высокий уровень нерасщепляемого в рубце протеина в рационе, на 8,4 ммоль/л (р <0,05).

Уровень щелочной фосфатазы и лактатдегидрогеназы в крови снижается в крови животных первой и второй опытных групп. Концентрация щелочной фосфатазы и лактатдегидрогеназы в крови у коров первой опытной группы ниже, чем у контрольной, на 9.6 и 12.2% (р <0.05).

У коров опытных групп в конце периода лактации сохраняются тенденции по изменению биохимических показателей крови, полученные в период раздоя.

5. Установлено, что переваримость сухого и органического веществ, сырого протеина, жира и клетчатки, а также безазотистых экстрактивных веществ выше у опытных групп по сравнению с контролем.

У второй опытной группы переваримость сырого протеина, жира и клетчатки выше показателей переваримости первой опытной группы.

Количество переваренного азота выше у коров первой опытной группы на 16,5%, а у второй опытной группы — на 15,6%. Количество азота, выделенного с молоком, выше у коров опытных групп и составило 208,98 и 215,58 кг против контрольной (189,22 кг), что обусловлено молочной продуктивностью.

Баланс азота у коров контрольной группы отрицательный, а у животных опытных групп — положительный, что свидетельствует о высокой эффективности усвоения азота в организме.

6. Значение pH содержимого рубца всех трех групп укладывается в допустимый диапазон физиологической нормы, однако в опытных группах все же ближе к оптимальному значению по сравнению с контролем. В свою очередь, уровень ЛЖК в содержимом рубца опытных групп выше на 3,86-12,1 ммоль /л.

В содержимом рубца у опытных групп количество аммиака ниже на 3,69-7,13 мг/100 мл, чем в контрольной.

Установлено, что у коров первой опытной группы происходит повышение уровня уксусной и пропионовой кислот на 1,38 и 0,32% соответственно по сравнению с животными контрольной группы.

7. При введении в состав рационов ферментированного рапсового шрота сокращается продолжительность сервис-периода на 2-5 сут., а также снижается индекс осеменения на 0,3-0,6 ед.

Показано, что при 100%-ной замене натурального на ферментированный рапсовый шрот в большей степени выражено улучшение основных показателей воспроизводства.

8. В результате оптимизации протеиновой питательности рационов путем введения ферментированного рапсового шрота установлено, что наблюдается повышение затрат, относимых на себестоимость молока, за счет его более высокой стоимости по сравнению с натуральным рапсовым шротом. Однако прирост молочной продуктивности вследствие применения оптимизированных рационов способствует приросту выручки на 6186,54-13114,24 руб. соответственно за период опыта.

Расчет уровня рентабельности на основании полученного молока и затрат показывает, что ее максимальный уровень — у коров первой опытной группы, который составляет 22,9% против 19,0% в контрольной и второй опытной группах.

Результаты производственной проверки рационального уровня ввода ферментированного рапсового шрота в состав полносмешанного рациона лактирующих коров в период раздоя подтвердили полученные ранее данные в условиях большей выборки.

9. При анализе полученных результатов были разработаны научно-практические рекомендации по введению рационального уровня

ферментированного рапсового в состав рациона с целью оптимизации концентрации транзитного протеина в рационе и определены перспективы дальнейшей разработки темы.

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

С целью повышения молочной продуктивности, показателей воспроизводства и здоровья лактирующих коров, а также увеличения переваримости питательных веществ рациона, повышения баланса азота и оптимизации рубцового пищеварения, улучшения экономических показателей технологии производства молока рекомендуется использовать оптимизированные рационы путем включения в них ферментированного рапсового шрота взамен 50%-ного натурального рапсового шрота для поддержания следующих уровней нерасщепляемого в рубце протеина, %:

- 39,1 в период начала лактации;
- 35,7 в середине лактации;
- 34,1 в конце лактации.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

В дальнейшем научные исследования будут ориентированы на изучение зоотехнических, физиологических и экономических показателей с использованием комбикормов с различным уровнем ввода ферментированного рапсового шрота в рационах животных разных половозрастных групп в отрасли молочного и мясного скотоводства, а также других сельскохозяйственных животных.

Статьи, опубликованные в журналах, рекомендованных ВАК РФ:

- 1. Буряков, Н.П. Ферментированный рапсовый шрот в кормлении лактирующих коров / Н.П. Буряков, **И.В. Менберг** // Комбикорма. -2023. -№ 12. C. 59-62.
- 2. Медведев, И.К. Оценка эффективности влияния ферментированного рапсового шрота на молочную продуктивность коров / И.К. Медведев, Н.П. Буряков, **И.В. Менберг**, А.В. Жевнеров // Кормопроизводство. − 2023. − № 1. − С. 43-47.

Статьи, опубликованные в других изданиях:

- 3. **Менберг, И.В.** Оценка эффективности влияния ферментированного рапсового шрота на молочную продуктивность коров и обменные процессы / **И.В. Менберг,** И.А. Анискин, Н.П. Буряков // Материалы Международной научной конференции молодых ученых и специалистов, посвященной 180-летию со дня рождения К.А. Тимирязева: Сборник статей. Москва, 5-7 июня 2023 г. Москва: Российский государственный аграрный университет МСХА имени К.А. Тимирязева, 2023. С. 305-308.
- 4. **Менберг, И.В.** Эффективность использования разного уровня ферментированного рапсового шрота в рационах лактирующих коров в период раздоя / **И.В. Менберг,** И.А. Анискин, Н.П. Буряков // Аграрно-пищевые инновации. -2023. № 2(22). С. 32-39.
- 5. **Менберг, И.В.** Оценка эффективности влияния кормового средства «КаноЛак» на молочную продуктивность коров и индикаторы рубца в период раздоя / **И.В. Менберг,** Н.П. Буряков // Материалы Международной научной конференций молодых ученых и специалистов, посвященной 160-летию Тимирязевской академии: Сборник статей. Москва, 5-7 июня 2025 г. Москва: Российский государственный аграрный университет МСХА имени К.А. Тимирязева, 2025. С. 100-103.