# Алжарамани Насим

# ПОИСК ИСТОЧНИКОВ МУЖСКОЙ СТЕРИЛЬНОСТИ И РАЗРАБОТКА МЕТОДОВ ГЕНЕТИЧЕСКОГО УСОВЕРШЕНСТВОВАНИЯ МОРКОВИ (D. CAROTA L.)

Специальность: 4.1.2. Селекция, семеноводство и биотехнология растений

#### АФТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре молекулярной селекции, клеточных технологий и семеноводства Федерального государственного бюджетного образовательного учреждения высшего образования «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева»

#### Научный руководитель:

#### Монахос Сократ Григорьевич,

доктор сельскохозяйственных наук, профессор, зав. кафедрой молекулярной селекции, клеточных технологий и семеноводства ФГБОУ ВО «Российский государственный аграрный университет–МСХА имени К.А. Тимирязева»

#### Официальные оппоненты:

# Домблидес Артур Сергеевич,

доктор сельскохозяйственных наук, профессор, зав. лабораторией генетики и цитологии ФГБНУ «Федеральный научный центр овощеводства»

# Курина Анастасия Борисовна,

кандидат сельскохозяйственных наук, младший научный сотрудник, куратор коллекции малораспространенных культур отдела генетических ресурсов овощных и бахчевых ФГБНУ «Федеральный культур, исследовательский центр Всероссийский институт растений Н.И. генетических ресурсов Вавилова»

#### Ведущая организация

ФГБНУ Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии»

Защита состоится «22» декабря 2025 г. в 13:00 на заседании диссертационного совета 35.2.030.08, созданного на базе ФГБОУ ВО «Российский государственный аграрный университет—МСХА имени К.А. Тимирязева», по адресу: 127434, г. Москва, ул. Прянишникова, д. 19, тел: 8 (499) 976-17-14.

Юридический адрес для отправки почтовой корреспонденции (отзывов): 127434, г. Москва, ул. Тимирязевская, д. 49.

С диссертацией можно ознакомиться в Центральной научной библиотеке имени Н.И. Железнова ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева» и на сайте Университета <u>www.timacad.ru</u>.

| Автореферат | разослан | <b>~</b> | » | 20 | Γ |
|-------------|----------|----------|---|----|---|
|             |          |          |   |    |   |

Ученый секретарь диссертационного совета

Е.А. Вертикова

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

**Актуальность.** Морковь (*Daucus carota* L.) с хромосомным набором 2n=2x=18, занимает одно из ведущих мест среди выращиваемых во всем мире корнеплодов и имеет существенное экономическое значение (Mulugeta et al., 2025). Морковь часто используется в биотехнологических исследованиях в качестве модельного объекта, а методы культивирования *in vitro* открывают новые возможности для совершенствования культуры (Алжарамани и Монахос, 2025; Que et al., 2019).

В селекции моркови создание гибридов (F1) осуществляется на основе ядерно-цитоплазматической мужской стерильности (ЦМС) (Farinati et al., 2023; Broussard et al., 2017) с достаточно сложным генетическим контролем и подверженностью факторов среды. Создание аллоплазматической истинной цитоплазматической мужской стерильности (ЦМС) у D. carota, неподверженной факторам среды и восстановлению фертильности за счет влияния ядерных генов, может стать существенным достижением в селекции моркови, облегчающим генетико-селекционную схему создания F1-гибридов. Потенциально метод слияния протопластов может позволить внедрить чужеродные цитоплазматические геномы в ядерный фон моркови (Bruznican et al., 2021; Xu et al., 2022) и индуцировать мужскую стерильность, независящую от линий закрепителей стерильности, что позволит устранить основное ограничение традиционных систем ядерно-цитоплазматической мужской стерильности, при которых восстановление фертильности и расщепление снижают эффективность селекции (Thakur et al., 2020; Chugh et al., 2020; Thi et al., 2023).

Степень разработанности темы. Пионерский протокол по получению соматических гибридов из изолированных протопластных культур впервые был разработан на примере моркови (D. carota L.) (Krumbiegel, 1979). Данный метод с использованием протопластного слияния позволил интегрировать митохондриальную ДНК донорного вида в цитоплазму моркови, что создало изучения механизмов мужской стерильности условия аллоплазматических линий. В дальнейшем протокол был адаптирован и модифицирован для улучшения эффективности слияния протопластов различных генотипов моркови (Pelletier et al., 1995; Bruznican et al., 2021; Gieniec et al., 2020). Изменения включали оптимизацию условий культуры и отбора протопластов, использование индикатора успешного слияния, применение мтДНК-анализа для подтверждения интеграции цитоплазматических геномов (Bhattacharya et al., 2024; Ranaware et al., 2023; Chugh et al., 2020). При этом известно, что некоторые генотипы моркови обладают низкой отзывчивостью к слиянию протопластов и требуют поиска дополнительных подходов. Таким

образом, несмотря на значительный прогресс в разработке протоколов протопластного слияния у D. carota, исследования по их оптимизации продолжаются.

**Цель** — изучение возможности усовершенствования генетического разнообразия моркови (*D. carota*) с привлечением новых источников цитоплазматической мужской стерильности (ЦМС) на основе методов отдаленной половой и соматической гибридизации.

Для достижения этой цели решали следующие задачи:

- 1. Фенотипическое исследование цветочных структур и скриннинг проявления мужской стерильности образцов генетической коллекции отдаленнородственных видов моркови (D. carota), фенхеля (F. vulgare) и сельдерея (A. graveolens).
- 2. Молекулярно-генетическое изучение обладающих мужской стерильностью образцов моркови (*D. carota*), фенхеля (*F. vulgare*) и сельдерея (*A. graveolens*) с использованием ДНК-маркеров S(стерильного)-типа и N(фертильного)-типа цитоплазмы моркови (*D. carota*), оценка генетических различий МС.
- 3. Оценка половой совместимости (скрещиваемости) и возможности генетической интрогрессии признака мужской стерильности из образцов сельдерея (A. graveolens) и фенхеля (F. vulgare) в морковь (D. carota) при отдаленной половой гибридизации, в том числе при использовании технологии спасения зародышей.
- 4. Изучение и оптимизация элементов протокола слияния протопластов для интрогресии признака мужской стерильности из сельдерея (A. graveolens) и/или фенхеля (F. vulgare) в морковь (D. carota) методом соматической гибридизации, в частности, изучение факторов, определяющих плотность протопластов из мезофилла и каллусных клеток:
  - Изучение влияние концентрации осмотического агента (сорбит) при предварительной обработке на выход и жизнеспособность протопластов;
  - Изучение влияния продолжительности обработки ферментами на выход протопластов;
  - Изучение частоты хемослияния протопластов клеток каллуса фенхеля (F. vulgare) и протопластов мезофилла листа моркови (*D. carota*).

**Научная новизна.** Впервые показаны морфологические особенности проявления мужской стерильности цветков образцов сельдерея, проявляющейся в редукции тычинок и отсутствии фертильной пыльцы, и образца фенхеля проявляющейся в отсутствии фертильной пыльцы при нормальном,

нередуцированном строении пыльников. Впервые на основе молекулярногенетического исследования установлено отличие генетических факторов, определяющих мужскую стерильность образцов фенхеля (F. vulgare) и сельдерея (A. graveolens) от генетических факторов S(стерильного)-типа цитоплазмы моркови (D. carota) (праймеры cmt-1, cmt-2). Установлена половая несовместимость в комбинациях скрещивания мужски стерильных образцов фенхеля и сельдерея c фертильными образцами моркови - F.  $vulgare \times D$ . carota, A.  $graveolens \times D$ . carota.

Выявлено существенное влияние фактора «концентрация осмотического агента» и фактора «экспозиция» на выход жизнеспособных протопластов. Показано, что сочетание условий - 0,5 М сорбит, 6 часа экспозиция позволяют достичь максимального выхода жизнеспособных протопластов из 5-недельных листьев моркови (D. carota). Показана закономерность - увеличение продолжительности обработки листьев 5-недельных проростков моркови ферментами в концентрации 1% (W/V) целлюлазы и 0.1% (W/V) пектиназы приводит к увеличению выхода протопластов, и снижению их жизнеспособности. Установлена возможность хемослияния протопластов моркови (D. carota) из мезофилла фенхеля (F.vulgare) из каллуса с частотой образования протопластов бинуклеарных гетерокарионов 4,6 х 104 при исходном числе протопластов в суспензии  $2 \times 10^5$ .

**Теоретическая и практическая значимость.** Впервые выявлены, фенотипически и молекулярно-генетически охарактеризованы образцы фенхеля (*F. vulgare*) F1 «Драгон» и сельдерея (*A. graveolens*) F1 «Мамбо», F1 «Сейнния» и F1 «Балина», обладающие мужской стерильностью, контролируемой отличным от S-типа мужской стерильности моркови генетическим фактором.

Выявленные мужски стерильные образцы фенхеля (F. vulgare) и сельдерея (A. graveolens) являются потенциальными генетическими источниками для создания аллоплазматической цитоплазматической мужской стерильности моркови (D. carota).

Показано отсутствие формирования полового потомства при опылении фертильной пыльцой моркови ( $D.\ carota$ ) более 2000 цветков мужски стерильных образцов сельдерея ( $A.\ graveolens$ ) и 300 фенхеля ( $F.\ vulgare$ ), в том числе с использованием технологии спасения зародышей 269 семязачатков в комбинации межродового скрещивания ( $A.\ graveolens \times D.\ carota$ ) и 285 семязачатков в комбинации ( $F.\ vulgare \times D.\ carota$ ), что свидетельствует о неэффективности половой гибридизации и необходимости применения соматической гибридизации для интрогрессии признака мужской стерильности в морковь ( $D.\ carota$ ).

Выявленная взаимосвязь выхода и жизнеспособности протопластов моркови позволила модифицировать метод экстракции и получить  $3,41\times10^5$  жизнеспособных протопластов с жизнеспособностью 95%, что в 22-раза больше, чем при использовании стандартного метода.

Впервые представлен метод выделения протопластов из клеточной суспензии фенхеля (F. vulgare) с плотностью  $1 \times 10^6$  протопластов на миллилитр.

С использованием метода хемослияния при применении полиэтиленгликоля показана частота слияния протопластов мезофилла листа (D. carota) и протопластов каллуса фенхеля (F. vulgare) на уровне 46%.

Доказано, что хемослияние является высокоэффективным методом получения бинуклеарных гетерокарионов в количестве, достигающем  $4,6 \times 10^4$  ед. при исходном числе протопластов в суспензии  $2 \times 10^5$ . При этом показано, что жизнеспособность соматических гибридов при инкубировании в питательной среде может достигать 43 дней.

Методология и методы исследований. Теоретическая часть исследования реализована через систематический аналитический обзор и интеграцию существующих научных данных, опубликованных в профильной литературе. Экспериментальная часть базируется на применении комплекса как стандартных, так и специализированных запатентованных методик, что обеспечило сбор репрезентативного массива экспериментальных данных. Объективность и достоверность результатов обеспечена углублённым статистическим анализом, охватывающий все ключевые параметры. Детальное описание методологических подходов, включая конкретные протоколы и используемые инструменты, представлено в разделе «Материалы и методы» диссертации.

#### Основные положения, выносимые на защиту:

- 1. Выявленные образцы фенхеля (*F. vulgare*), F1 «Драгон», и сельдерея (*A. graveolens*), F1 «Мамбо», F1 «Сейнния» и F1 «Балина», обладают генетически отличающимися типами цитоплазматической мужской стерильности от S(стерильного)-типа цитоплазмы моркови (*D. carota*).
- 2. Половая несовместимость при гибридизации фертильных образцов моркови (*D. carota*) с мужски стерильными образцами сельдерея (*A. graveolens*) и фенхеля (*F. vulgare*), не позволяет произвести половое семенное потомство, в том числе при использовании технологии спасения зародышей.
- 3. Оптимизированный метод предварительной обработки листьев 5недельных растений моркови ( $D.\ carota$ ), инкубированием в растворе сорбита с концентрацией 0,5 М в течение 6 часов, позволяет получить максимальный выход жизнеспособных протопластов -  $1,51\times10^5$  протопластов на миллилитр с жизнеспособностью 95%.

4. Частота образования бинуклеарных гетерокарионов в результате хемослияния протопластов мезофилла листа моркови ( $D.\ carota$ ) и протопластов каллуса фенхеля ( $F.\ vulgare$ ) при исходном числе протопластов в суспензии  $2 \times 10^5$  составляет  $4.6 \times 10^4$ .

Степень достоверности и апробация результатов. Обоснование данного исследования базируется на комплексном эмпирическом подходе, включающем обоснованное определение необходимой выборки и числа повторных измерений в экспериментальном дизайне. Применение строгих методов статистического анализа обеспечило всестороннюю верификацию полученных данных, что высокой достоверности и воспроизводимости результатов способствовало результаты представлены на 8 международных исследования. Основные конференциях: Международная научная конференция молодых ученых и специалистов, посвященная 135-летию со дня рождения А.Н. Костякова (Москва, 2022); Международная научная конференция молодых ученых и специалистов, посвященная 180-летию со дня рождения К.А. Тимирязева (Москва, 2023); Международная научная конференция молодых ученых и специалистов, посвященная 180-летию со дня рождения К.А. Тимирязева (Москва, 2023); научно-практическая конференция «Акутальные Международная биологии, селекции и агротехники садовых культур» в честь 100-летия со дня рождения академика Г.И. Тараканова (Москва, 2023); Международная ХХІІІ-й научная конференция молодых ученых «Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии» (Москва, научная конференция молодых ученых и специалистов, Международная посвященная 150-летию со дня рождения Миловича Александра Яковлевича (Москва, 2024); Международная научная конференция молодых ученых и специалистов, посвященная 150-летию со дня рождения Миловича Александра Яковлевича (Москва, 2024); International scientific conference "AGRONOMY -2024" AgriScience (Москва, 2024).

**Личный вклад соискателя.** Автор самостоятельно осуществлял экспериментальные исследования, разрабатывал методологическую основу исследования и выполнял начальные экспериментальные процедуры. Кроме того, автор несет ответственность за теоретическую интерпретацию и систематизацию полученных данных.

**Публикации результатов исследований.** По материалам диссертации опубликовано 7 печатных работ, в том числе 1- в рецензируемых научных изданиях, рекомендованных ВАК РФ, 2- в изданиях, входящих в МБД, 4- статьи в сборниках конференций.

Структура и объем диссертации. Диссертационная работа изложена на 148 страницах, состоит из введения, основной части, содержащей 6 таблицы, 44 рисунков, заключения, библиографического списка, включающего 155 источника на иностранном языке.

## МАТЕРИАЛЫ И МЕТОДЫ

Работа выполнена в 2021–2025 гг. на кафедре молекулярной селекции, клеточных технологий и семеноводства ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева. Идентификацию ЦМС проводили на фенотипическом и молекулярно-генетическом уровнях.

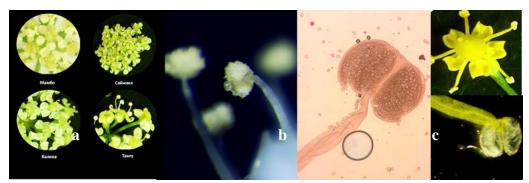
Для исследования использовали шесть различных образцов сельдерея и фенхеля. Семена были высеяны, проростки были получены в теплице в феврале 2022 года.

Выделяли ДНК из листьев моркови методом СТАВ, амплифицировали митохондриальные гены с ЦМС-специфическими праймерами, а ПЦР-продукты анализировали гель-электрофорезом и секвенированием для поиска маркеров цитоплазматической мужской стерильности. Концентрацию ДНК измеряли с помощью спектрофотометра и отправляли на секвенирование в компанию Evrogen.

Для межвидовых скрещиваний использовали мужски стерильные и фертильные *Apium graveolens* как женские родители и фертильные *D. carota* - как мужские. Скрещивания проводили весной 2023–2024 годов вручную. Через 10–30 дней оценивали развитие зародышей, а для их спасения извлекали семязачатки и культивировали на среде MS.

Выделяли протопласты по разным протоколам для максимального выхода, затем разработали собственный. Протопласты получали из цитоплазматически мужски стерильного донора (сельдерея, фенхеля) и фертильного реципиента (моркови), используя разные растительные ткани.

Провели эксперименты по созданию гибридов двумя методами: соматической гибридизацией и половым скрещиванием со спасением зародышей. Для слияния использовали протопласты моркови (акцептор) и фенхеля ЦМС (донор) в 0.5 М маннитоле при плотности  $1\times10^5$  протопластов/мл в соотношении 1:1.


## РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

# Скрининг цитоплазматической мужской стерильности у отдаленно родственных видов *D. carota*

**Фенотипические исследования флоральных структур.** Согласно фенотипическим наблюдениям, три образца сельдерея (Мамбо, Сейнния, Балина) демонстрируют стерильность (рис. 1.a), все они имеют атрофированные

пыльники, вероятно, тычинки целиком. У образца фенхеля (Драгон) также наблюдалось проявление стерильности, однако пыльники имеют нормальное нередуцированное строение (рис. 1 с).

моркови фертильность фенотипически быть мужская может охарактеризована несколькими отличительными признаками, включая производство нормальных пыльцевых зерен, нормальную структуру пыльников и отсутствие аномальных цветочных структур (рис. 1.b). И наоборот, мужская стерильность может быть распознана по наличию сморщенной, слегка окрашенной пыльцы, деформированной структуре пыльников.



**Рисунок 1.** а) Цветочная детекция: у сельдерея образцов Мамбо, Сейнния и Балина атрофированные пыльники, у Танго — нормальные и фертильные; b) Пыльник моркови с фертильными пыльцевыми зернами и сами зерна при окрашивании ацетокармином.; c) Цветочная детекция фенхеля образца Драгон выявила мужскую стерильность: пыльники нормальны внешне, но не содержат фертильных пыльцевых зерен

Молекулярно-генетические исследования типов ЦМС в генетической Исследование коллекции моркови, фенхеля И сельдерея. наличия молекулярных маркеров мужской стерильности моркови в сельдерее и фенхеле, установило, что пары праймеров cmt1-cmt2 эффективно различали ЦМС и фертильные образцы моркови, давая ампликоны разного традиционной ПЦР. Праймеры cmt3-atp1d1 и cmt4-atp1d1 не амплифицировали маркеры у большинства образцов (СКС, Канада, Вильмарин).

В соответствии с используемыми праймерами, маркер S- и N-типа цитоплазмы моркови (*D. carota* L.), амплифицируемый с праймерами (смт-1 и смт-2) показывает, что в образцах моркови с цитоплазматической мужской стерильностью полоса на уровне 320 п.н., а в фертильных образцах с нормальной цитоплазмой полоса на уровне 390 п.н.

Только у моркови получены ожидаемые результаты благодаря специфичным праймерам. Маркеры нормальной и стерильной цитоплазмы моркови не амплифицировались у образцов сельдерея и фенхеля. Линии моркови Тайфун (фертильная — 390 п.н., стерильная — 320 п.н.), Канада (390 п.н.), Вильмарин

(фертильная) и СКС (стерильная — 320 п.н.) показали характерные уровни полос маркера.

У образцов сельдерея "Мамбо", "Сейнния", "Балина" и фенхеля "Дракон" маркеры стерильной цитоплазмы моркови не обнаружены, несмотря на фенотипическое проявление мужской стерильности. Данные стерильные растения могут быть донорами протопластов для слияния с морковью при создании аллоплазматической цитоплазматической мужской стерильности моркови.

#### Половая отдаленная гибридизация

Эксперимент проводили весной 2023 и 2024 годов. В 2023-м опылено 24 зонтика сельдерея и 8 фенхеля пыльцой моркови; для спасения зародышей использовали 18 зонтиков сельдерея (684 плода) и 6 фенхеля (102 плода). В 2024-м опылено 28 зонтиков сельдерея и 11 фенхеля; спасали зародыши из 23 зонтиков сельдерея (828 плодов) и 9 фенхеля (144 плода). Остальные зонтики оставляли для естественного созревания — семян не образовалось. Для спасения отбирали только здоровые плоды (таблица 1).

**Таблица 1.** Статистический учет числа зонтиков, плодов и семязачатков при отдаленной половой гибридизации сельдерея и моркови, фенхеля и моркови.

| Культура  | Сезон | Число<br>опыленных<br>зонтиков | Число собранных зонтиков после опыления | Число<br>цветков на<br>отобранных<br>зонтиках | Число опыленных цветков, отобранных для спасения зародышей | Число<br>изолированных<br>семязачатков |
|-----------|-------|--------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------------------------------|
| Сельдерей | 2023  | 24                             | 18                                      | 684                                           | 286                                                        | 126                                    |
| Сельдерей | 2024  | 28                             | 23                                      | 828                                           | 302                                                        | 143                                    |
| Фенхель   | 2023  | 8                              | 6                                       | 102                                           | 83                                                         | 150                                    |
| Фенхель   | 2024  | 11                             | 9                                       | 144                                           | 79                                                         | 135                                    |

Перекрестное опыление фенхеля морковью приводило к образованию семязачатков примерно в 4 раза чаще, чем с сельдереем. Для преодоления постзиготической несовместимости применяли спасение зародышей: семязачатки 10–30 изолировали через дней, стерилизовали И культивировали модифицированной среде без. MS c фитогормонами И Большинство культивировали целиком, некоторые с надрезами, но семязачатки фенхеля и сельдерея не развивались на любой среде. Из-за неэффективности отдалённой гибридизации дальнейшие эксперименты были сосредоточены на соматической гибридизации протопластов.

# Соматическая гибридизация

**Изучение и разработка технологии выделения протопластов.** Протопласты были выделены из ЦМС растения-донора и фертильного растения-реципиента, которые обладают способностью к слиянию и гибридизации клеток.

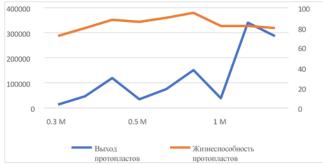
Оптимизация протокола для получения высокой плотности протопластов мезофилла листа. Были применены три различных протокола, результаты изоляции приведены в таблице 2.

**Таблица 2.** Плотность выделенных протопластов мезофилла в соответствии с различными протоколами

| Источник               | Среднее      | Сравнение с       | Показатель |
|------------------------|--------------|-------------------|------------|
|                        | значение     | допустимой        | успешности |
|                        | плотности    | плотностью для    | выделения  |
|                        | протопластов | применения фузии  |            |
| Sofiari et al. (1998)  | 7467         | < 10 <sup>5</sup> | 73%        |
| Baranski et al. (2007) | 12340        | < 10 <sup>5</sup> | 61%        |
| Meyer et al. (2022)    | 9113         | < 10 <sup>5</sup> | 57%        |

Bce протокола три дали низкую плотность протопластов (меньше  $10^5$  протопластов/мл), недостаточную для слияния и регенерации. Хотя метод Bruznican et al. (2007) обеспечивал наибольший выход, жизнеспособность протопластов была ниже. Поэтому разработали новый протокол, оптимизированный для Аріасеае, устраняющий эти недостатки.

Оптимизация протокола для получения высокой плотности протопластов с использованием суспензии каллусных клеток. Были применены три различных протокола, результаты изоляции приведены в таблице 3.


**Таблица 3.** Плотность выделенных протопластов из клеточной суспензии в соответствии с различными протоколами.

| Источник                | Среднее      | Сравнение с      | Показатель |
|-------------------------|--------------|------------------|------------|
|                         | значение     | допустимой       | успешности |
|                         | плотности    | плотностью для   | изоляции   |
|                         | протопластов | применения фузии |            |
| Wen et al. (2012)       | 6853         | < 105            | 90%        |
| Grzebelus et al. (2012) | 15798        | < 105            | 82%        |
| Poddar et al. (2020)    | 11099        | < 105            | 64%        |

Все три протокола выделения протопластов дают плотность ниже минимально необходимой для слияния и регенерации ( $10^5$  протопластов/мл). Метод Grzebelus et al., (2012) обеспечивает большее количество протопластов, но с меньшей жизнеспособностью. На основе анализа ранее известных методов разработан новый протокол, оптимизирующий выделение для улучшения качества и количества протопластов.

Разработка протокола для изоляции протопластов мезофилла из проростков моркови. Оценивали параметры выделения протопластов, включая концентрацию сорбита/маннитола, продолжительность предплазмолиза, время обработки ферментами, концентрацию используемых ферментов, количество и типы промывочных растворов, а также диаметр ячеек при фильтрации с использованием листьев моркови. Наконец, мы изучили, как эти переменные влияют на жизнеспособность и выход протопластов моркови.

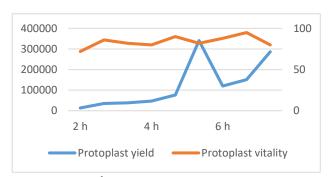
Влияние концентрации сорбита при предварительной обработке на выход и жизнеспособность протопластов. Сорбит применяли как единственный осмотический агент. Выход протопластов из листьев моркови максимален 3,41  $\times$  10<sup>5</sup> протопластов/г FW при 1 M сорбита и 4 часах ферментативной обработки (P  $\leq$  0,05). Жизнеспособность достигала 95% при 0,5 M и 6 часах обработки (P  $\leq$  0,05), но снижалась при больших концентрациях и длительном времени. Оптимальной считается предварительная обработка 0,5 M сорбитом (рис. 3).



**Рисунок 3.** Влияние концентрации сорбита на выход и жизнеспособность протопластов моркови ( $P \le 0.05$ ), что оценивалось с помощью теста LSD. Приведенные значения представляют собой среднее стандартное отклонение  $\pm$  SD (n = 3)

Статистический анализ показал отсутствие значимой разницы в жизнеспособности протопластов при 0,5 M сорбита и 4 или 6 часах ферментной обработки, а также при 0,3 M и 6 часах (табл. 4). Концентрация сорбита (0,3–1 M) и время обработки (2–6 ч) существенно влияют на выход жизнеспособных протопластов моркови. Оптимальными являются 0,5 M сорбита и 6 часов экспозиции для максимального выхода жизнеспособных протопластов *D. carota*.

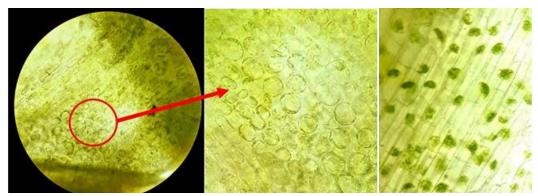
Влияние продолжительности обработки ферментами на выход протопластов. При 2 часах обработки выход протопластов был низким. Увеличение времени до 4 часов привело к значительному росту выхода протопластов ( $3,41 \times 10^5$  протопластов/г FW) при снижении жизнеспособности до 81%. При 6-часовой обработке с 0,5 М маннитолом выход составил  $1,5 \times 10^5$  протопластов/г FW с хорошей жизнеспособностью. Использование 1 М маннита при 6 часах дало высокий выход ( $2,9 \times 10^5$  протопластов/г FW), но с пониженной жизнеспособностью (79%) и повреждением протопластов (рис. 4).


**Таблица 4.** Влияние концентрации предварительной обработки сорбитом и времени обработки ферментами на выход протопластов и их жизнеспособность: по результатам статистического анализа PAST.

| Сорбит, концентрация предварительной обработки | Время обработки ферментов, | Выход протопластов, ед. | Число жизнеспособных протопластов, ед. | Жизнеспособность,<br>% |
|------------------------------------------------|----------------------------|-------------------------|----------------------------------------|------------------------|
| 0.3 M                                          |                            | 13800±1818e             | 9993.33±1350f                          | 72.46±2e               |
| 0.5 M                                          | 2                          | 35133.33±5402de         | 30272.33±5218ef                        | 85.68±2bcd             |
| 1 M                                            |                            | 38666.67±1832de         | 31807.33±1262ef                        | 82.35±2bcd             |
| 0.3 M                                          |                            | 47166.67±3226de         | 37703.67±2874ef                        | 79.86±1de              |
| 0.5 M                                          | 4                          | 76366.67±3634cd         | 68762.33±4314de                        | 89.91±1ab              |
| 1 M                                            |                            | 340600±22010a           | 277512±13607a                          | 81.66±2cd              |
| 0.3 M                                          |                            | 119700±13369bc          | 105986±12184cd                         | 88.48±1abc             |
| 0.5 M                                          | 6                          | 151000±4513b            | 143483.67±4908c                        | 95a                    |
| 1 M                                            |                            | 286733.33±18751a        | 228593.33±13946b                       | 79.77±1de              |

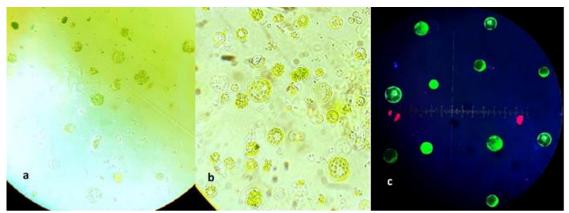
Примечание: значения в строке, отмеченные одинаковыми строчными буквами (a, b, c), согласно t-критерию Стьюдента, не имеют существенного различия на 5 % уровне значимости ( $P \le 0.05$ )

**Рисунок 4.** Влияние продолжительности обработки ферментов на выход протопластов и жизнеспособность протопластов моркови. (P,05) согласно тесту LSD. Представленные значения обозначают среднее  $\pm$  SD (n = 3) стандартное отклонение


Средний выход протопластов составил  $1,51 \times 10^5$ , при этом жизнеспособность достигала 95 %. Важно подчеркнуть, что жизнеспособность изолированных протопластов имеет большее значение, чем их общий выход.



Увеличение времени ферментативного гидролиза свыше 6 часов приводит к разрыву плазматической мембраны, снижению выхода и жизнеспособности

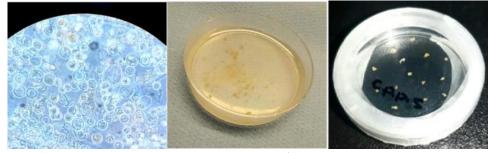

протопластов, а также накоплению клеточных остатков. Оптимальное время ферментативной обработки составляет 6 часов.

# Разработка протокола выделения протопластов мезофилла.



**Рисунок 5.** Растительные ткани после плазмолиза демонстрируют сокращение внутриклеточной плазмы в результате потери воды (масштабная линейка = 50 мкм, увеличение  $400\times$ )

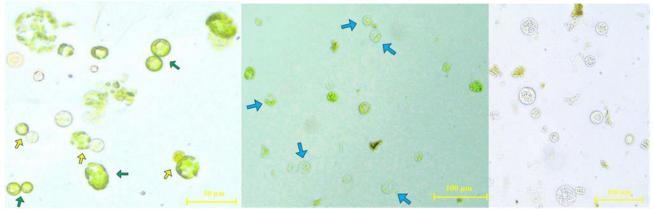
После стерилизации, семена сеют на твердую среду MS с сахарозой и агаром, выдерживают при 24±1°С в темноте; через 10 дней проростки переносят на регенерационную среду. Протопласты выделяют из листьев *in vitro* проростков после инкубации ткани в преплазмолизном растворе (0,5 M сорбитол, 0,05 M CaCl2) при 24±1°С в темноте 1 час для осмотической поддержки (рис. 5). Затем ткани обрабатывают ферментной смесью (0,5% целлюлазы, 0,1% пектиназы, 20 мМ MES, 5 мМ CaCl2 и 0,6 M маннитола, рН 5,6) при 24±1°С и встряхивании 30 об/мин в течение 6 ч. Протопласты освобождают, встряхивая в растворе W5, фильтруют через нейлоновые фильтры 100 и 40 мкм, отжимают остатки, повторно фильтруют и центрифугируют при 150 об/мин 10 минут. Осадок дважды ресуспендируют в 0,5 М маннитоле, затем в 2 мл MMG с MES-буфером, маннитолом и MgCl2. Под микроскопом протопласты имеют сферическую форму и зелёную флуоресценцию, подтверждающую их жизнеспособность (рис. 6).




**Рисунок 6.** Изолированные протопласты моркови: а) использование 0,5 М сорбита при времени обработки ферментов 4 ч; b) 0,5 М сорбита при 6 ч; c) зеленая флуоресценция жизнеспособных протопластов после окрашивания FDA

**Разработанный протокол изоляции протопластов из клеточной суспензии фенхеля.** Стерилизованные семена фенхеля высевают на среду MS с витаминами, сахарозой, NaFeEDTA, глицином и агаром, pH 5,8. Пластины инкубируют при 24±1°C, ростки через 15 дней переносят на такую же среду.

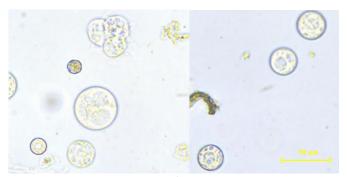
Индукция каллуса фенхеля: экспланты листьев и черешков культивируют на среде MS с 30 г/л сахарозы, 0.5 г/л ферментативного гидролизата казеина, 0.5 мг/л 2.4-Д, 0.5 мг/л кинетина и 7 г/л агара при  $24\pm1$  °C в темноте. Рыхлые каллусы появляются через 12 дней, обновляются ежемесячно до нужного объема для клеточной суспензии. Были получены протопласты высокого качества и в большом количестве -  $10^6$ , здоровые, сферической формы (рис. 7.а). Из протопластов, полученных из фенхеля, образуются микрокаллусы (рис. 7. b) и, наконец, каллус (рис. 7. c).


Инициация суспензии клеток: Суспензионные культуры фенхеля получали, культивируя 250 мг каллуса в 6 чашках с 5 мл жидкой среды МS (30 г/л сахарозы, 0,5 г/л гидролизата казеина, 0,6 мг/л 2,4-Д, 0,55 мг/л кинетина) при 24±1 °C, 60 об/мин. Через неделю каллус удаляли, культуры еженедельно обновляли и разбавляли свежей средой 1:1. Протопласты выделяют из суспензионных культур фенхеля (5–9 недель) 4 дня после субкультивирования. Ткань (~1 г) инкубируют ночи в ферментном растворе (целлюлаза 0,5%, пектиназа 0,05%, MES 20 мМ, СаС12 5 мМ, маннитол 0,6 М) при 24±1°С с встряхиванием. Смесь фильтруют через 100 и 40 мкм сита, центрифугируют при 150 g 10 мин. Протопласты промывают средой W5 и маннитолом, центрифугируя после каждого промывания. Для очистки от мертвых клеток и остатков используют фильтрацию и градиентное центрифугирование.



**Рисунок 7.** а) выделенные протопласты; b) микрокаллусы, полученные при культивировании протопластов; c) Микрокаллусы, перенесенные на твердую среду

**Хемослияние протопластов суспензии клеток** *Foeniculum vulgare* **с протопластами мезофилла** *D. carota.* Очищенные протопласты из клеток каллуса и протопласты мезофилла смешивали в соотношении 1 : 1 в предфузионном растворе. Протопласты, подвергшиеся химически индуцированному слиянию, начали непосредственно сливаться через 1 день.


Наблюдалось достаточно большое количество слитых один к одному протопластов (две родительские клетки слились в бинуклеарный гетерокарион), а некоторые слитые протопласты представляли собой слияние нескольких родительских протопластов (рис. 8. а).



**Рисунок 8.** а) Сближение в питательной среде протопластов: протопласты мезофилла и каллуса (желтые стрелки), сближение протопластов клеток мезофилла и мезофилла (зеленые стрелки); b) Клетки соматических гибридов через 2 дня культуры, синие стрелки указывают на слившиеся протопласты с зеленым и светло-прозрачным цветами; c) Клетки соматических гибридов после 5 дней культивирования

Через 2 дня культивирования слившиеся протопласты можно было легко отличить от других клеток благодаря зеленому цвету хлоропластов из протопластов мезофилла и светлому прозрачному цвету протопластов клеточной суспензии (рис. 8. b). Через 5 дней после слияния в цитоплазме протопластов наблюдались диффузные зеленые компоненты, что осложняло их отчетливое различение и приводило к разрыву некоторых клеток (рис. 8. c).

Затем, еще через 15 дней, большинство клеток увеличилось (рис. 9).



**Рисунок 9.** Клетки соматических гибридов после 20 дней культивирования Количество слившихся клеток и гибридных слившихся клеток от общего культивируемых протопластов было тщательно подсчитано. Общее количество культивированных клеток составило  $2 \times 10^5$ , общее количество слитых клеток - 6,8 х  $10^4$  (частота слияния 68%), а количество гибридных слитых клеток - 4,6 х  $10^4$  (частота слияния 46%).

Максимальная продолжительность сохранения жизнеспособности этих клеток составила 43 дня, после чего они начали приобретать коричневатый оттенок, свидетельствующий о их гибели.

#### **ЗАКЛЮЧЕНИЕ**

В результате фенотипического анализа генеративной сферы, соцветий и цветков, растений генетической коллекции фенхеля (F. vulgare) и сельдерея (A. graveolens) выявлены образцы сельдерея, F1 «Мамбо», F1 «Сейнния» и F1 «Балина», а также образец фенхеля F1 «Драгон», растения которых проявляли мужскую стерильность.

Установлено, что мужская стерильность образцов сельдерея проявляется в редукции тычинок и отсутствии фертильной пыльцы, образца фенхеля — в отсутствии фертильной пыльцы при нормальном, нередуцированном строении пыльников.

Молекулярно-генетическое исследование мужски стерильных образцов фенхеля (F. vulgare) и сельдерея (A. graveolens) выявило отличие ДНК-маркеров (праймеры смт-1, смт-2) цитоплазматических факторов, определяющих МС фенхеля и сельдерея, от S(стерильного)-типа цитоплазмы моркови (D. carota). Таким образом, показано, что мужски стерильные образцы сельдерея F1 «Мамбо», «Сейнния», «Балина» и фенхеля F1 «Драгон» могут быть использованы в селекции моркови в качестве новых источников аллоплазматической цитоплазматической мужской стерильности.

В результате анализа скрещиваемости при ручном опылении фертильной пыльцой моркови (D. carota) более 2000 и 300 цветков мужски стерильных образцов сельдерея (A. graveolens) и фенхеля (F. vulgare), соответственно, в том числе при использовании технологии спасения зародышей при изоляции и искусственном инкубировании 269 семязачатков сельдерея (A. graveolens) и 285 семязачатков фенхеля (F. vulgare), показана половая несовместимость и невозможность произвести половое потомство при гибридизации в комбинациях F. vulgare × D. carota, A. graveolens× D. carota с использованием представленных мужски стерильных образцов фенхеля, сельдерея и фертильных образцов моркови.

Статистический анализ выхода жизнеспособных протопластов мезофилла при предварительной обработке 5-недельных листьев моркови различными концентрациями осмотического агента, сорбита, 0,3 M, 0,5 M, 1,0 М при экспозициях в течение 2, 4 и 6 часов позволило установить достоверность влияния этих факторов на выход жизнеспособных протопластов и оптимизировать метод предварительной обработки для получения максимального

выхода жизнеспособных протопластов из листьев D. carota в комбинации условий: 0,5 M сорбит, 6 часа экспозиция.

Показано, что с увеличением продолжительности обработки ферментами 1% (W/V) целлюлазы и 0.1% (W/V) пектиназы при инкубировании листьев 5-недельных проростков моркови в течение 2, 4 и 6 часов увеличивается выход протопластов, однако при этом снижается их жизнеспособность.

Использование выявленных закономерностей модифицированном протоколе жизнеспособных позволило протопластов повысить выход  $3,41 \times 105$ протопластов экстрагированном виде ДО на миллилитр 95%, что в 22-раза превышает число жизнеспособностью протопластов, изолируемых по стандартному протоколу в нашем эксперименте, и соответствует требованиям успешного слияния или регенерации протопластов (плотность в диапазоне  $5 \times 10^4$  -  $1 \times 10^6$  протопластов на миллилитр).

В результате исследования впервые представлен успешный метод выделения протопластов из клеточной суспензии фенхеля (F. vulgare) с плотностью, достигающей  $1\times10^6$  протопластов на миллилитр.

В результате хемослияния c использованием полиэтиленгликоля протопластов мезофилла листа моркови (D. carota) и протопластов каллуса фенхеля (F. vulgare) частота образования бинуклеарных гетерокарионов составила 4,6 х 104 при исходном числе протопластов в суспензии 2 х 105, при этом старт слияния происходил в 1-й день, на 2-й день соматически гибридные клетки выделялись в общей массе объединяя зеленую часть протопластов мезофилла протопластов листа моркови прозрачную частей каллуса И Максимальная продолжительность жизнеспособности этих клеток составила 43 дня.

# Рекомендации производству

- 1. В селекционных программах по созданию аллоплазматической цитоплазматической мужской стерильности моркови использовать в качестве источников признака мужски стерильные образцы сельдерея (A. graveolens), F1 «Мамбо», F1 «Сейнния» и F1 «Балина», а также образец фенхеля (F. vulgare) F1 «Драгон», растения которых не обладают маркерами S(стерильного)-типа цитоплазмы моркови (D. carota).
- 2. В методах слияния протопластов для получения максимального выхода жизнеспособных протопластов мезофилла из листьев *D. carota* рекомендуется инкубировать ткани пятинедельных растений моркови в 0,5 M растворе сорбита в течение 6 часов.

#### СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

# Публикации в рецензируемых научных изданиях, рекомендованных ВАК РФ:

1. Алжарамани Насим. Оптимальные параметры для изоляции протопластов мезофилла моркови in vitro / Алжарамани Насим, С.Г. Монахос // Овощи России. -2025. -№ 3. - C. 5-9. DOI: 10.18619/2072-9146-2025-3-5-9.

# Работы, опубликованные в изданиях, индексируемых в международных иитатно-аналитических базах данных:

- 2. Aljaramany Naseem. Somatic hybridization in agricultural crops improvement: An environmentally amiable era in biotechnology / Aljaramany Naseem, A.V. Vishnyakova, S.G. Monakhos // Caspian J. Environ. Sci. − 2024. − № 22(5). − P. 1233–1241. DOI: 10.22124/cjes.2024.8236.
- 3. Aljaramany Naseem. Isolation and regeneration of cell suspension-derived Foeniculum vulgare protoplasts / Aljaramany Naseem, S.G. Monakhos // BIO Web of Conferences. 2024. № 58. P. 05008. DOI: 10.1051/bioconf/202413905008.

# Публикации в сборниках и материалах конференций:

- 4. Алжарамани Насим. Оптимизация технологии выделения протопластов с использованием листьев D. carota (моркови) in vitro / Алжарамани Насим, С.Г. Монахос // Международная научная конференция молодых учёных и специалистов, посвящённая 150-летию со дня рождения А.Я. Миловича. Сборник статей. М.: Изд-во РГАУ-МСХА, 2024. С. 17-19.
- 5. Алжарамани Насим. Создание аллоплазмической МС моркови (D. carota L.) слиянием протопластов / Алжарамани Насим, С.Г. Монахос // Международная научная конференция молодых учёных и специалистов, посвящённая 180-летию со дня рождения К.А. Тимирязева, г. Москва, 7-9 июня 2023 г.: Сборник статей. М.: Изд-во РГАУ-МСХА, 2023. С. 17-20.
- 6. Aljaramany Naseem. Carrot protoplast isolation and fusion with relatives: A key tool for biotechnological and plant breeding research / Aljaramany Naseem, S.G. Monakhos // Материалы Международной научной конференции молодых учёных и специалистов, посвящённой 180-летию со дня рождения К.А. Тимирязева. Сборник статей. М.: Изд-во РГАУ-МСХА, 2023. С. 515-518.
- 7. Aljaramany Naseem. Development of alloplasmic male-sterile line of carrot by protoplast fusion / Aljaramany Naseem, S.V. Feopentova // Материалы Международной научной конференции молодых учёных и специалистов, посвящённой 135-летию со дня рождения А.Н. Костиков. Сборник статей. М.: Изд-во РГАУ-МСХА, 2022. С. 22-24.